1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkWarpTransform.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkWarpTransform.h"
#include "vtkMath.h"
//----------------------------------------------------------------------------
void vtkWarpTransform::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "InverseFlag: " << this->InverseFlag << "\n";
os << indent << "InverseTolerance: " << this->InverseTolerance << "\n";
os << indent << "InverseIterations: " << this->InverseIterations << "\n";
}
//----------------------------------------------------------------------------
vtkWarpTransform::vtkWarpTransform()
{
this->InverseFlag = 0;
this->InverseTolerance = 0.001;
this->InverseIterations = 500;
}
//----------------------------------------------------------------------------
vtkWarpTransform::~vtkWarpTransform()
{
}
//------------------------------------------------------------------------
// Check the InverseFlag, and perform a forward or reverse transform
// as appropriate.
template<class T>
void vtkWarpTransformPoint(vtkWarpTransform *self, int inverse,
const T input[3], T output[3])
{
if (inverse)
{
self->TemplateTransformInverse(input,output);
}
else
{
self->TemplateTransformPoint(input,output);
}
}
void vtkWarpTransform::InternalTransformPoint(const float input[3],
float output[3])
{
vtkWarpTransformPoint(this,this->InverseFlag,input,output);
}
void vtkWarpTransform::InternalTransformPoint(const double input[3],
double output[3])
{
vtkWarpTransformPoint(this,this->InverseFlag,input,output);
}
//------------------------------------------------------------------------
// Check the InverseFlag, and set the output point and derivative as
// appropriate.
template<class T>
void vtkWarpTransformDerivative(vtkWarpTransform *self,
int inverse,
const T input[3], T output[3],
T derivative[3][3])
{
if (inverse)
{
self->TemplateTransformInverse(input,output,derivative);
vtkMath::Invert3x3(derivative,derivative);
}
else
{
self->TemplateTransformPoint(input,output,derivative);
}
}
void vtkWarpTransform::InternalTransformDerivative(const float input[3],
float output[3],
float derivative[3][3])
{
vtkWarpTransformDerivative(this,this->InverseFlag,input,output,derivative);
}
void vtkWarpTransform::InternalTransformDerivative(const double input[3],
double output[3],
double derivative[3][3])
{
vtkWarpTransformDerivative(this,this->InverseFlag,input,output,derivative);
}
//----------------------------------------------------------------------------
// We use Newton's method to iteratively invert the transformation.
// This is actally quite robust as long as the Jacobian matrix is never
// singular.
template<class T>
void vtkWarpInverseTransformPoint(vtkWarpTransform *self,
const T point[3],
T output[3],
T derivative[3][3])
{
T inverse[3], lastInverse[3];
T deltaP[3], deltaI[3];
double functionValue = 0;
double functionDerivative = 0;
double lastFunctionValue = VTK_DOUBLE_MAX;
double errorSquared = 0;
double toleranceSquared = self->GetInverseTolerance();
toleranceSquared *= toleranceSquared;
T f = 1.0;
T a;
// first guess at inverse point: invert the displacement
self->TemplateTransformPoint(point,inverse);
inverse[0] -= 2*(inverse[0]-point[0]);
inverse[1] -= 2*(inverse[1]-point[1]);
inverse[2] -= 2*(inverse[2]-point[2]);
lastInverse[0] = inverse[0];
lastInverse[1] = inverse[1];
lastInverse[2] = inverse[2];
// do a maximum 500 iterations, usually less than 10 are required
int n = self->GetInverseIterations();
int i;
for (i = 0; i < n; i++)
{
// put the inverse point back through the transform
self->TemplateTransformPoint(inverse,deltaP,derivative);
// how far off are we?
deltaP[0] -= point[0];
deltaP[1] -= point[1];
deltaP[2] -= point[2];
// get the current function value
functionValue = (deltaP[0]*deltaP[0] +
deltaP[1]*deltaP[1] +
deltaP[2]*deltaP[2]);
// if the function value is decreasing, do next Newton step
// (the check on f is to ensure that we don't do too many
// reduction steps between the Newton steps)
if (functionValue < lastFunctionValue || f < 0.05)
{
// here is the critical step in Newton's method
vtkMath::LinearSolve3x3(derivative,deltaP,deltaI);
// get the error value in the output coord space
errorSquared = (deltaI[0]*deltaI[0] +
deltaI[1]*deltaI[1] +
deltaI[2]*deltaI[2]);
// break if less than tolerance in both coordinate systems
if (errorSquared < toleranceSquared &&
functionValue < toleranceSquared)
{
break;
}
// save the last inverse point
lastInverse[0] = inverse[0];
lastInverse[1] = inverse[1];
lastInverse[2] = inverse[2];
// save the function value at that point
lastFunctionValue = functionValue;
// derivative of functionValue at last inverse point
functionDerivative = (deltaP[0]*derivative[0][0]*deltaI[0] +
deltaP[1]*derivative[1][1]*deltaI[1] +
deltaP[2]*derivative[2][2]*deltaI[2])*2;
// calculate new inverse point
inverse[0] -= deltaI[0];
inverse[1] -= deltaI[1];
inverse[2] -= deltaI[2];
// reset f to 1.0
f = 1.0;
continue;
}
// the error is increasing, so take a partial step
// (see Numerical Recipes 9.7 for rationale, this code
// is a simplification of the algorithm provided there)
// quadratic approximation to find best fractional distance
a = -functionDerivative/(2*(functionValue -
lastFunctionValue -
functionDerivative));
// clamp to range [0.1,0.5]
f *= (a < 0.1 ? 0.1 : (a > 0.5 ? 0.5 : a));
// re-calculate inverse using fractional distance
inverse[0] = lastInverse[0] - f*deltaI[0];
inverse[1] = lastInverse[1] - f*deltaI[1];
inverse[2] = lastInverse[2] - f*deltaI[2];
}
vtkDebugWithObjectMacro(self, "Inverse Iterations: " << (i+1));
if (i >= n)
{
// didn't converge: back up to last good result
inverse[0] = lastInverse[0];
inverse[1] = lastInverse[1];
inverse[2] = lastInverse[2];
// print warning: Newton's method didn't converge
vtkErrorWithObjectMacro(self,
"InverseTransformPoint: no convergence (" <<
point[0] << ", " << point[1] << ", " << point[2] <<
") error = " << sqrt(errorSquared) << " after " <<
i << " iterations.");
}
output[0] = inverse[0];
output[1] = inverse[1];
output[2] = inverse[2];
}
void vtkWarpTransform::InverseTransformPoint(const float point[3],
float output[3])
{
float derivative[3][3];
vtkWarpInverseTransformPoint(this, point, output, derivative);
}
void vtkWarpTransform::InverseTransformPoint(const double point[3],
double output[3])
{
double derivative[3][3];
vtkWarpInverseTransformPoint(this, point, output, derivative);
}
//----------------------------------------------------------------------------
void vtkWarpTransform::InverseTransformDerivative(const float point[3],
float output[3],
float derivative[3][3])
{
vtkWarpInverseTransformPoint(this, point, output, derivative);
}
void vtkWarpTransform::InverseTransformDerivative(const double point[3],
double output[3],
double derivative[3][3])
{
vtkWarpInverseTransformPoint(this, point, output, derivative);
}
//----------------------------------------------------------------------------
// To invert the transformation, just set the InverseFlag.
void vtkWarpTransform::Inverse()
{
this->InverseFlag = !this->InverseFlag;
this->Modified();
}
|