File: Rrand_table.py

package info (click to toggle)
vtk 5.8.0-13
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 130,524 kB
  • sloc: cpp: 1,129,256; ansic: 708,203; tcl: 48,526; python: 20,875; xml: 6,779; yacc: 4,208; perl: 3,121; java: 2,788; lex: 931; sh: 660; asm: 471; makefile: 299
file content (51 lines) | stat: -rw-r--r-- 1,517 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

# Python example script that uses the Gnu R random table source to create an output
# table with 5 columns and 30 rows.  The columns are filled random numbers drawn
# from a Normal, Poisson, Chi-square, Uniform, and Binomial distribution, respecively.

# VTK must be built with VTK_USE_GNU_R turned on for this example to work!

from vtk import *

if __name__ == "__main__":

  # Define parameters for each distribution. Integers for each distribution type are 
  # defined in the C++ header file VTK/Graphics/vtkRRandomTableSource.h
  
  NORMAL = 17
  mean_nd = 5.0
  sd_nd = 2.5
  
  POISSON = 4
  lambda_pd = 3.0
  
  CHISQUARE = 18
  k_csd = 3.0
  
  UNIFORM = 14
  lb_ud = 5.0
  ub_ud = 100.0
  
  BINOMIAL = 16
  nt_bd = 100
  ps_bd = 0.2
  
  # Create R random table source
  tablesource = vtkRRandomTableSource()

  # Define distribution type form each output column of the table
  tablesource.SetStatisticalDistributionForColumn(NORMAL,mean_nd,sd_nd,0.0,"Normal",0)
  tablesource.SetStatisticalDistributionForColumn(POISSON,lambda_pd,0.0,0.0,"Poisson",1)
  tablesource.SetStatisticalDistributionForColumn(CHISQUARE,k_csd,0.0,0.0,"Chi-Square",2)
  tablesource.SetStatisticalDistributionForColumn(UNIFORM,lb_ud,ub_ud,0.0,"Uniform",3)
  tablesource.SetStatisticalDistributionForColumn(BINOMIAL,nt_bd,ps_bd,0.0,"Binomial",4)

  tablesource.SetNumberOfRows(30)
  
  # Update table source output and print the table to the output
  tablesource.Update()
  table = tablesource.GetOutput()
  table.Dump(30)