File: vtkContourGrid.cxx

package info (click to toggle)
vtk 5.8.0-13
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 130,524 kB
  • sloc: cpp: 1,129,256; ansic: 708,203; tcl: 48,526; python: 20,875; xml: 6,779; yacc: 4,208; perl: 3,121; java: 2,788; lex: 931; sh: 660; asm: 471; makefile: 299
file content (440 lines) | stat: -rw-r--r-- 13,640 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkContourGrid.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkContourGrid.h"

#include "vtkCell.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkContourValues.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkSimpleScalarTree.h"
#include "vtkUnstructuredGrid.h"
#include "vtkCutter.h"
#include "vtkMergePoints.h"
#include "vtkPointLocator.h"
#include "vtkIncrementalPointLocator.h"

#include <math.h>

vtkStandardNewMacro(vtkContourGrid);

// Construct object with initial range (0,1) and single contour value
// of 0.0.
vtkContourGrid::vtkContourGrid()
{
  this->ContourValues = vtkContourValues::New();

  this->ComputeNormals = 1;
  this->ComputeGradients = 0;
  this->ComputeScalars = 1;

  this->Locator = NULL;

  this->UseScalarTree = 0;
  this->ScalarTree = NULL;

  // by default process active point scalars
  this->SetInputArrayToProcess(0,0,0,vtkDataObject::FIELD_ASSOCIATION_POINTS,
                               vtkDataSetAttributes::SCALARS);
}

vtkContourGrid::~vtkContourGrid()
{
  this->ContourValues->Delete();
  if ( this->Locator )
    {
    this->Locator->UnRegister(this);
    this->Locator = NULL;
    }
  if ( this->ScalarTree )
    {
    this->ScalarTree->Delete();
    }
}

// Overload standard modified time function. If contour values are modified,
// then this object is modified as well.
unsigned long vtkContourGrid::GetMTime()
{
  unsigned long mTime=this->Superclass::GetMTime();
  unsigned long time;

  if (this->ContourValues)
    {
    time = this->ContourValues->GetMTime();
    mTime = ( time > mTime ? time : mTime );
    }
  if (this->Locator)
    {
    time = this->Locator->GetMTime();
    mTime = ( time > mTime ? time : mTime );
    }

  return mTime;
}

template <class T>
void vtkContourGridExecute(vtkContourGrid *self, vtkDataSet *input,
                           vtkPolyData *output,
                           vtkDataArray *inScalars, T *scalarArrayPtr,
                           int numContours, double *values, 
                           int computeScalars,
                           int useScalarTree,vtkScalarTree *&scalarTree)
{
  vtkIdType cellId, i;
  int abortExecute=0;
  vtkIncrementalPointLocator *locator = self->GetLocator();
  vtkIdList *cellPts;
  vtkCell *cell;
  double range[2];
  vtkCellArray *newVerts, *newLines, *newPolys;
  vtkPoints *newPts;
  vtkIdType numCells, estimatedSize;
  vtkPointData *inPd=input->GetPointData(), *outPd=output->GetPointData();
  vtkCellData *inCd=input->GetCellData(), *outCd=output->GetCellData();
  vtkDataArray *cellScalars;
  vtkUnstructuredGrid *grid = static_cast<vtkUnstructuredGrid *>(input);
  //In this case, we know that the input is an unstructured grid.
  vtkIdType numPoints, cellArrayIt = 0;
  int needCell = 0;
  vtkIdType *cellArrayPtr;
  T tempScalar;

  numCells = input->GetNumberOfCells();

  //
  // Create objects to hold output of contour operation. First estimate
  // allocation size.
  //
  estimatedSize=static_cast<vtkIdType>(pow(static_cast<double>(numCells),.75));
  estimatedSize *= numContours;
  estimatedSize = estimatedSize / 1024 * 1024; //multiple of 1024
  if (estimatedSize < 1024)
    {
    estimatedSize = 1024;
    }

  newPts = vtkPoints::New();
  newPts->Allocate(estimatedSize,estimatedSize);
  newVerts = vtkCellArray::New();
  newVerts->Allocate(estimatedSize,estimatedSize);
  newLines = vtkCellArray::New();
  newLines->Allocate(estimatedSize,estimatedSize);
  newPolys = vtkCellArray::New();
  newPolys->Allocate(estimatedSize,estimatedSize);
  cellScalars = inScalars->NewInstance();
  cellScalars->SetNumberOfComponents(inScalars->GetNumberOfComponents());
   cellScalars->Allocate(VTK_CELL_SIZE*inScalars->GetNumberOfComponents());
  
   // locator used to merge potentially duplicate points
  locator->InitPointInsertion (newPts, input->GetBounds(),estimatedSize);

  // interpolate data along edge
  // if we did not ask for scalars to be computed, don't copy them
  if (!computeScalars)
    {
    outPd->CopyScalarsOff();
    }
  outPd->InterpolateAllocate(inPd,estimatedSize,estimatedSize);
  outCd->CopyAllocate(inCd,estimatedSize,estimatedSize);

  // If enabled, build a scalar tree to accelerate search
  //
  if ( !useScalarTree )
    {
    // Three passes over the cells to process lower dimensional cells first.
    // For poly data output cells need to be added in the order:
    // verts, lines and then polys, or cell data gets mixed up.
    // A better solution is to have an unstructured grid output.
    // I create a table that maps cell type to cell dimensionality,
    // because I need a fast way to get cell dimensionality.
    // This assumes GetCell is slow and GetCellType is fast.
    // I do not like hard coding a list of cell types here, 
    // but I do not want to add GetCellDimension(vtkIdType cellId)
    // to the vtkDataSet API.  Since I anticipate that the output
    // will change to vtkUnstructuredGrid.  This temporary solution 
    // is acceptable.
    //
    int cellType;
    unsigned char cellTypeDimensions[VTK_NUMBER_OF_CELL_TYPES];
    vtkCutter::GetCellTypeDimensions(cellTypeDimensions);
    int dimensionality;
    // We skip 0d cells (points), because they cannot be cut (generate no data).
    for (dimensionality = 1; dimensionality <= 3; ++dimensionality)
      {
      // Loop over all cells; get scalar values for all cell points
      // and process each cell.
      //
      cellArrayIt = 0;
      cellArrayPtr = grid->GetCells()->GetPointer();
      for (cellId=0; cellId < numCells && !abortExecute; cellId++)
        {
        numPoints = cellArrayPtr[cellArrayIt];
        // I assume that "GetCellType" is fast.
        cellType = input->GetCellType(cellId);
        if (cellType >= VTK_NUMBER_OF_CELL_TYPES)
          { // Protect against new cell types added.
          vtkGenericWarningMacro("Unknown cell type " << cellType);
          cellArrayIt += 1+numPoints;
          continue;
          }
        if (cellTypeDimensions[cellType] != dimensionality)
          {
          cellArrayIt += 1+numPoints;
          continue;
          }
        cellArrayIt++;
        
        //find min and max values in scalar data
        range[0] = scalarArrayPtr[cellArrayPtr[cellArrayIt]];
        range[1] = scalarArrayPtr[cellArrayPtr[cellArrayIt]];
        cellArrayIt++;
        
        for (i = 1; i < numPoints; i++)
          {
          tempScalar = scalarArrayPtr[cellArrayPtr[cellArrayIt]];
          cellArrayIt++;
          if (tempScalar <= range[0])
            {
            range[0] = tempScalar;
            } //if tempScalar <= min range value
          if (tempScalar >= range[1])
            {
            range[1] = tempScalar;
            } //if tempScalar >= max range value
          } // for all points in this cell
        
        if (dimensionality == 3 &&  ! (cellId % 5000) ) 
          {
          self->UpdateProgress (static_cast<double>(cellId)/numCells);
          if (self->GetAbortExecute())
            {
            abortExecute = 1;
            break;
            }
          }
        
        for (i = 0; i < numContours; i++)
          {
          if ((values[i] >= range[0]) && (values[i] <= range[1]))
            {
            needCell = 1;
            } // if contour value in range for this cell
          } // end for numContours
        
        if (needCell)
          {
          cell = input->GetCell(cellId);
          cellPts = cell->GetPointIds();
          inScalars->GetTuples(cellPts,cellScalars);
          
          for (i=0; i < numContours; i++)
            {
            if ((values[i] >= range[0]) && (values[i] <= range[1]))
              {
              cell->Contour(values[i], cellScalars, locator,
                            newVerts, newLines, newPolys, inPd, outPd,
                            inCd, cellId, outCd);
              } // if contour value in range of values for this cell
            } // for all contour values
          } // if contour goes through this cell
        needCell = 0;
        } // for all cells
      } // For all dimensions.
    } //if using scalar tree
  else
    {
    // Note: This will have problems when input contains 2D and 3D cells.
    // CellData will get scrabled because of the implicit ordering of
    // verts, lines and polys in vtkPolyData.  The solution
    // is to convert this filter to create unstructured grid.
    //
    if ( scalarTree == NULL )
      {
      scalarTree = vtkSimpleScalarTree::New();
      }
    scalarTree->SetDataSet(input);
    //
    // Loop over all contour values.  Then for each contour value, 
    // loop over all cells.
    //
    for (i=0; i < numContours; i++)
      {
      for ( scalarTree->InitTraversal(values[i]); 
          (cell=scalarTree->GetNextCell(cellId,cellPts,cellScalars)) != NULL; )
        {
        cell->Contour(values[i], cellScalars, locator,
                      newVerts, newLines, newPolys, inPd, outPd,
                      inCd, cellId, outCd);
           //don't want to call Contour any more than necessary
        } //for all cells
      } //for all contour values
    } //using scalar tree

  //
  // Update ourselves.  Because we don't know up front how many verts, lines,
  // polys we've created, take care to reclaim memory. 
  //
  output->SetPoints(newPts);
  newPts->Delete();
  cellScalars->Delete();
  
  if (newVerts->GetNumberOfCells())
    {
    output->SetVerts(newVerts);
    }
  newVerts->Delete();

  if (newLines->GetNumberOfCells())
    {
    output->SetLines(newLines);
    }
  newLines->Delete();

  if (newPolys->GetNumberOfCells())
    {
    output->SetPolys(newPolys);
    }
  newPolys->Delete();

  locator->Initialize();//releases leftover memory
  output->Squeeze();
}

//
// Contouring filter for unstructured grids.
//
int vtkContourGrid::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and output
  vtkUnstructuredGrid *input = vtkUnstructuredGrid::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkDataArray *inScalars;
  void *scalarArrayPtr;
  vtkIdType numCells;
  int numContours = this->ContourValues->GetNumberOfContours();
  double *values = this->ContourValues->GetValues();
  int computeScalars = this->ComputeScalars;
  int useScalarTree = this->UseScalarTree;
  vtkScalarTree *&scalarTree = this->ScalarTree;

  vtkDebugMacro(<< "Executing contour filter");

  if ( this->Locator == NULL )
    {
    this->CreateDefaultLocator();
    }

  numCells = input->GetNumberOfCells();
  inScalars = this->GetInputArrayToProcess(0,inputVector);
  if ( ! inScalars || numCells < 1 )
    {
    vtkDebugMacro(<<"No data to contour");
    return 1;
    }

  scalarArrayPtr = inScalars->GetVoidPointer(0);
        
  switch (inScalars->GetDataType())
    {
    vtkTemplateMacro(
      vtkContourGridExecute(this, input, output, inScalars,
                            static_cast<VTK_TT *>(scalarArrayPtr),
                            numContours, values,computeScalars, useScalarTree, 
                            scalarTree));
    default:
      vtkErrorMacro(<< "Execute: Unknown ScalarType");
      return 1;
    }

  return 1;
}

// Specify a spatial locator for merging points. By default, 
// an instance of vtkMergePoints is used.
void vtkContourGrid::SetLocator(vtkIncrementalPointLocator *locator)
{
  if ( this->Locator == locator ) 
    {
    return;
    }
  if ( this->Locator )
    {
    this->Locator->UnRegister(this);
    this->Locator = NULL;
    }
  if ( locator )
    {
    locator->Register(this);
    }
  this->Locator = locator;
  this->Modified();
}

void vtkContourGrid::CreateDefaultLocator()
{
  if ( this->Locator == NULL )
    {
    this->Locator = vtkMergePoints::New();
    this->Locator->Register(this);
    this->Locator->Delete();
    }
}

int vtkContourGrid::FillInputPortInformation(int, vtkInformation *info)
{
  info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkUnstructuredGrid");
  return 1;
}

void vtkContourGrid::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "Compute Gradients: " 
     << (this->ComputeGradients ? "On\n" : "Off\n");
  os << indent << "Compute Normals: " 
     << (this->ComputeNormals ? "On\n" : "Off\n");
  os << indent << "Compute Scalars: " 
     << (this->ComputeScalars ? "On\n" : "Off\n");
  os << indent << "Use Scalar Tree: " 
     << (this->UseScalarTree ? "On\n" : "Off\n");

  this->ContourValues->PrintSelf(os,indent.GetNextIndent());

  if ( this->Locator )
    {
    os << indent << "Locator: " << this->Locator << "\n";
    }
  else
    {
    os << indent << "Locator: (none)\n";
    }
}