1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkDelaunay3D.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkDelaunay3D.h"
#include "vtkEdgeTable.h"
#include "vtkExecutive.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPointLocator.h"
#include "vtkPolyData.h"
#include "vtkTetra.h"
#include "vtkTriangle.h"
#include "vtkUnstructuredGrid.h"
#include "vtkIncrementalPointLocator.h"
vtkStandardNewMacro(vtkDelaunay3D);
// Structure used to represent sphere around tetrahedron
//
typedef struct _vtkDelaunayTetra
{
double r2;
double center[3];
}
vtkDelaunayTetra;
// Special classes for manipulating tetra array
//
class vtkTetraArray { //;prevent man page generation
public:
vtkTetraArray(vtkIdType sz, vtkIdType extend);
~vtkTetraArray()
{
if (this->Array)
{
delete [] this->Array;
}
};
vtkDelaunayTetra *GetTetra(vtkIdType tetraId)
{ return this->Array + tetraId;};
void InsertTetra(vtkIdType tetraId, double r2, double center[3]);
vtkDelaunayTetra *Resize(vtkIdType sz); //reallocates data
protected:
vtkDelaunayTetra *Array; // pointer to data
vtkIdType MaxId; // maximum index inserted thus far
vtkIdType Size; // allocated size of data
vtkIdType Extend; // grow array by this amount
};
vtkTetraArray::vtkTetraArray(vtkIdType sz, vtkIdType extend)
{
this->MaxId = -1;
this->Array = new vtkDelaunayTetra[sz];
this->Size = sz;
this->Extend = extend;
}
void vtkTetraArray::InsertTetra(vtkIdType id, double r2, double center[3])
{
if ( id >= this->Size )
{
this->Resize(id+1);
}
this->Array[id].r2 = r2;
this->Array[id].center[0] = center[0];
this->Array[id].center[1] = center[1];
this->Array[id].center[2] = center[2];
if ( id > this->MaxId )
{
this->MaxId = id;
}
}
vtkDelaunayTetra *vtkTetraArray::Resize(vtkIdType sz)
{
vtkDelaunayTetra *newArray;
vtkIdType newSize;
if ( sz > this->Size )
{
newSize = this->Size + this->Extend*(((sz-this->Size)/this->Extend)+1);
}
else if (sz == this->Size)
{
return this->Array;
}
else
{
newSize = sz;
}
if ( (newArray = new vtkDelaunayTetra[newSize]) == NULL )
{
vtkGenericWarningMacro(<< "Cannot allocate memory\n");
return 0;
}
if (this->Array)
{
memcpy(newArray, this->Array,
(sz < this->Size ? sz : this->Size) * sizeof(vtkDelaunayTetra));
delete [] this->Array;
}
this->Size = newSize;
this->Array = newArray;
return this->Array;
}
// vtkDelaunay3D methods
//
// Construct object with Alpha = 0.0; Tolerance = 0.001; Offset = 2.5;
// BoundingTriangulation turned off.
vtkDelaunay3D::vtkDelaunay3D()
{
this->Alpha = 0.0;
this->Tolerance = 0.001;
this->BoundingTriangulation = 0;
this->Offset = 2.5;
this->Locator = NULL;
this->TetraArray = NULL;
// added for performance
this->Tetras = vtkIdList::New();
this->Tetras->Allocate(5);
this->Faces = vtkIdList::New();
this->Faces->Allocate(15);
this->CheckedTetras = vtkIdList::New();
this->CheckedTetras->Allocate(25);
}
vtkDelaunay3D::~vtkDelaunay3D()
{
if ( this->Locator )
{
this->Locator->UnRegister(this);
this->Locator = NULL;
}
if ( this->TetraArray )
{
delete this->TetraArray;
}
this->Tetras->Delete();
this->Faces->Delete();
this->CheckedTetras->Delete();
}
// special method for performance
static int GetTetraFaceNeighbor(vtkUnstructuredGrid *Mesh, vtkIdType tetraId,
vtkIdType p1, vtkIdType p2, vtkIdType p3,
vtkIdType& nei);
// Find all faces that enclose a point. (Enclosure means not satifying
// Delaunay criterion.) This method works in two distinct parts. First, the
// tetrahedra containing the point are found (there may be more than one if
// the point falls on an edge or face). Next, face neighbors of these points
// are visited to see whether they satisfy the Delaunay criterion. Face
// neighbors are visited repeatedly until no more tetrahedron are found.
// Enclosing tetras are returned in the tetras list; the enclosing faces
// are returned in the faces list.
vtkIdType vtkDelaunay3D::FindEnclosingFaces(double x[3],
vtkUnstructuredGrid *Mesh,
vtkIdList *tetras,
vtkIdList *faces,
vtkIncrementalPointLocator *locator)
{
vtkIdType tetraId, i, numTetras;
int j, insertFace;
vtkIdType p1, p2, p3, nei;
int hasNei;
vtkIdType *tetraPts, npts;
vtkIdType closestPoint;
double xd[3]; xd[0]=x[0]; xd[1]=x[1]; xd[2]=x[2];
// Start off by finding closest point and tetras that use the point.
// This will serve as the starting point to determine an enclosing
// tetrahedron. (We just need a starting point
if ( locator->IsInsertedPoint(x) >= 0 )
{
this->NumberOfDuplicatePoints++;
return 0;
}
closestPoint = locator->FindClosestInsertedPoint(x);
vtkCellLinks *links = Mesh->GetCellLinks();
int numCells = links->GetNcells(closestPoint);
vtkIdType *cells = links->GetCells(closestPoint);
if ( numCells <= 0 ) //shouldn't happen
{
this->NumberOfDegeneracies++;
return 0;
}
else
{
tetraId = cells[0];
}
// Okay, walk towards the containing tetrahedron
tetraId = this->FindTetra(Mesh,xd,tetraId,0);
if ( tetraId < 0 )
{
this->NumberOfDegeneracies++;
return 0;
}
// Initialize the list of tetras who contain the point according
// to the Delaunay criterion.
tetras->InsertNextId(tetraId); //means that point is in this tetra
// Okay, check neighbors for Delaunay criterion. Purpose is to find
// list of enclosing faces and deleted tetras.
numTetras = tetras->GetNumberOfIds();
for (this->CheckedTetras->Reset(), i=0; i < numTetras; i++)
{
this->CheckedTetras->InsertId(i,tetras->GetId(i));
}
p1 = 0;
p2 = 0;
p3 = 0;
for (i=0; i < numTetras; i++)
{
tetraId = tetras->GetId(i);
Mesh->GetCellPoints(tetraId,npts,tetraPts);
for (j=0; j < 4; j++)
{
insertFace = 0;
// Make sure to arrange these points so that they're in
// counterclockwise order when viewed from the center of the
// cell
switch (j)
{
case 0: // face 0: points 0, 1, 2
p1 = tetraPts[0]; p2 = tetraPts[1]; p3 = tetraPts[2]; break;
case 1: // face 1: points 1, 2, 3 (must flip order!)
p1 = tetraPts[1]; p2 = tetraPts[3]; p3 = tetraPts[2]; break;
case 2: // face 2: points 2, 3, 0
p1 = tetraPts[2]; p2 = tetraPts[3]; p3 = tetraPts[0]; break;
case 3: // face 3: points 3, 0, 1 (must flip order!)
p1 = tetraPts[3]; p2 = tetraPts[1]; p3 = tetraPts[0]; break;
}
hasNei = GetTetraFaceNeighbor(Mesh, tetraId, p1, p2, p3, nei);
//if a boundary face or an enclosing face
if ( !hasNei ) //a boundary face
{
insertFace = 1;
}
else
{
if ( this->CheckedTetras->IsId(nei) == -1 ) //if not checked
{
if ( this->InSphere(xd,nei) ) //if point inside circumsphere
{
numTetras++;
tetras->InsertNextId(nei); //delete this tetra
}
else
{
insertFace = 1; //this is a boundary face
}
this->CheckedTetras->InsertNextId(nei); //okay, we've checked it
}
else
{
if ( tetras->IsId(nei) == -1 ) //if checked but not deleted
{
insertFace = 1; //a boundary face
}
}
}
if ( insertFace )
{
faces->InsertNextId(p1);
faces->InsertNextId(p2);
faces->InsertNextId(p3);
}
}//for each tetra face
}//for all deleted tetras
// Okay, let's delete the tetras and prepare the data structure
for (i=0; i < tetras->GetNumberOfIds(); i++)
{
tetraId = tetras->GetId(i);
Mesh->GetCellPoints(tetraId, npts, tetraPts);
for (j=0; j<4; j++)
{
this->References[tetraPts[j]]--;
Mesh->RemoveReferenceToCell(tetraPts[j],tetraId);
}
}
return (faces->GetNumberOfIds() / 3);
}
int vtkDelaunay3D::FindTetra(vtkUnstructuredGrid *Mesh, double x[3],
vtkIdType tetraId, int depth)
{
double p[4][3];
double b[4];
vtkTetra *tetra;
int neg = 0;
int j, numNeg;
double negValue;
// prevent aimless wandering and death by recursion
if ( depth > 200 )
{
return -1;
}
tetra = static_cast<vtkTetra *>(Mesh->GetCell(tetraId));
for ( j=0; j < 4; j++ ) //load the points
{
tetra->Points->GetPoint(j,p[j]);
}
vtkTetra::BarycentricCoords(x, p[0], p[1], p[2], p[3], b);
// find the most negative face
for ( negValue=VTK_DOUBLE_MAX, numNeg=j=0; j<4; j++ )
{
if ( b[j] < 0.0 )
{
numNeg++;
if ( b[j] < negValue )
{
negValue = b[j];
neg = j;
}
}
}
// if no negatives, then inside this tetra
if ( numNeg <= 0 )
{
return tetraId;
}
// okay, march towards the most negative direction
int p1 = 0, p2 = 0, p3 = 0;
switch (neg)
{
case 0:
p1 = tetra->PointIds->GetId(1);
p2 = tetra->PointIds->GetId(2);
p3 = tetra->PointIds->GetId(3);
break;
case 1:
p1 = tetra->PointIds->GetId(0);
p2 = tetra->PointIds->GetId(2);
p3 = tetra->PointIds->GetId(3);
break;
case 2:
p1 = tetra->PointIds->GetId(0);
p2 = tetra->PointIds->GetId(1);
p3 = tetra->PointIds->GetId(3);
break;
case 3:
p1 = tetra->PointIds->GetId(0);
p2 = tetra->PointIds->GetId(1);
p3 = tetra->PointIds->GetId(2);
break;
}
vtkIdType nei;
if ( GetTetraFaceNeighbor(Mesh, tetraId, p1, p2, p3, nei) )
{
return this->FindTetra(Mesh, x, nei, ++depth);
}
else
{
return -1;
}
}
// 3D Delaunay triangulation. Steps are as follows:
// 1. For each point
// 2. Find tetrahedron point is in
// 3. Repeatedly visit face neighbors and evaluate Delaunay criterion
// 4. Gather list of faces forming boundary of insertion polyhedron
// 5. Make sure that faces/point combination forms good tetrahedron
// 6. Create tetrahedron from each point/face combination
//
int vtkDelaunay3D::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPointSet *input = vtkPointSet::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkUnstructuredGrid *output = vtkUnstructuredGrid::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkIdType numPoints, numTetras, i;
vtkIdType ptId;
vtkPoints *inPoints;
vtkPoints *points;
vtkUnstructuredGrid *Mesh;
double x[3];
vtkIdType npts;
vtkIdType *tetraPts, pts[4];
vtkIdList *cells, *holeTetras;
double center[3], tol;
char *tetraUse;
vtkDebugMacro(<<"Generating 3D Delaunay triangulation");
// Initialize; check input
//
if ( (inPoints=input->GetPoints()) == NULL )
{
vtkErrorMacro("<<Cannot triangulate; no input points");
return 1;
}
cells = vtkIdList::New();
cells->Allocate(64);
holeTetras = vtkIdList::New();
holeTetras->Allocate(12);
numPoints = inPoints->GetNumberOfPoints();
// Create initial bounding triangulation. Have to create bounding points.
// Initialize mesh structure.
input->GetCenter(center);
tol = input->GetLength();
Mesh = this->InitPointInsertion(center, this->Offset*tol,
numPoints, points);
// Insert each point into triangulation. Points lying "inside"
// of tetra cause tetra to be deleted, leaving a void with bounding
// faces. Combination of point and each face is used to form new
// tetrahedra.
for (ptId=0; ptId < numPoints; ptId++)
{
inPoints->GetPoint(ptId,x);
this->InsertPoint(Mesh, points, ptId, x, holeTetras);
if ( ! (ptId % 250) )
{
vtkDebugMacro(<<"point #" << ptId);
this->UpdateProgress (static_cast<double>(ptId)/numPoints);
if (this->GetAbortExecute())
{
break;
}
}
}//for all points
this->EndPointInsertion();
vtkDebugMacro(<<"Triangulated " << numPoints <<" points, "
<< this->NumberOfDuplicatePoints << " of which were duplicates");
if ( this->NumberOfDegeneracies > 0 )
{
vtkWarningMacro(<< this->NumberOfDegeneracies
<< " degenerate triangles encountered, mesh quality suspect");
}
// Send appropriate portions of triangulation to output
//
output->Allocate(5*numPoints);
numTetras = Mesh->GetNumberOfCells();
tetraUse = new char[numTetras];
for (i=0; i < numTetras; i++)
{
tetraUse[i] = 2; //mark as non-deleted
}
for (i=0; i < holeTetras->GetNumberOfIds(); i++)
{
tetraUse[holeTetras->GetId(i)] = 0; //mark as deleted
}
//if boundary triangulation not desired, delete tetras connected to
// boundary points
if ( ! this->BoundingTriangulation )
{
for (ptId=numPoints; ptId < (numPoints+6); ptId++)
{
Mesh->GetPointCells(ptId, cells);
for (i=0; i < cells->GetNumberOfIds(); i++)
{
tetraUse[cells->GetId(i)] = 0; //mark as deleted
}
}
}
// If non-zero alpha value, then figure out which parts of mesh are
// contained within alpha radius.
//
if ( this->Alpha > 0.0 )
{
double alpha2 = this->Alpha * this->Alpha;
vtkEdgeTable *edges;
char *pointUse = new char[numPoints+6];
vtkIdType p1, p2, p3, nei;
int hasNei, j, k;
double x1[3], x2[3], x3[3];
vtkDelaunayTetra *tetra;
static int edge[6][2] = {{0,1},{1,2},{2,0},{0,3},{1,3},{2,3}};
edges = vtkEdgeTable::New();
edges->InitEdgeInsertion(numPoints+6);
for (ptId=0; ptId < (numPoints+6); ptId++)
{
pointUse[ptId] = 0;
}
//traverse all tetras, checking against alpha radius
for (i=0; i < numTetras; i++)
{
//check tetras
if ( tetraUse[i] == 2 ) //if not deleted
{
tetra = this->TetraArray->GetTetra(i);
if ( tetra->r2 > alpha2 )
{
tetraUse[i] = 1; //mark as visited and discarded
}
else
{
Mesh->GetCellPoints(i, npts, tetraPts);
for (j=0; j<4; j++)
{
pointUse[tetraPts[j]] = 1;
}
for (j=0; j<6; j++)
{
p1 = tetraPts[edge[j][0]];
p2 = tetraPts[edge[j][1]];
if ( edges->IsEdge(p1,p2) == -1 )
{
edges->InsertEdge(p1,p2);
}
}
}
}//if non-deleted tetra
}//for all tetras
//traverse tetras again, this time examining faces
//used tetras have already been output, so we look at those that haven't
for (i=0; i < numTetras; i++)
{
if ( tetraUse[i] == 1 ) //if visited and discarded
{
Mesh->GetCellPoints(i, npts, tetraPts);
for (j=0; j < 4; j++)
{
p1 = tetraPts[j];
p2 = tetraPts[(j+1)%4];
p3 = tetraPts[(j+2)%4];
//make sure face is okay to create
if ( this->BoundingTriangulation ||
(p1 < numPoints && p2 < numPoints && p3 < numPoints) )
{
hasNei = GetTetraFaceNeighbor(Mesh, i, p1,p2,p3, nei);
if ( !hasNei || ( nei > i && tetraUse[nei]!=2 ) )
{
double dx1[3], dx2[3], dx3[3], dv1[3], dv2[3], dv3[3], dcenter[3];
points->GetPoint(p1,x1); dx1[0]=x1[0]; dx1[1]=x1[1]; dx1[2]=x1[2];
points->GetPoint(p2,x2); dx2[0]=x2[0]; dx2[1]=x2[1]; dx2[2]=x2[2];
points->GetPoint(p3,x3); dx3[0]=x3[0]; dx3[1]=x3[1]; dx3[2]=x3[2];
vtkTriangle::ProjectTo2D(dx1,dx2,dx3,dv1,dv2,dv3);
if ( vtkTriangle::Circumcircle(dv1,dv2,dv3,dcenter) <= alpha2 )
{
pts[0] = p1;
pts[1] = p2;
pts[2] = p3;
output->InsertNextCell(VTK_TRIANGLE,3,pts);
if ( edges->IsEdge(p1,p2) == -1 )
{
edges->InsertEdge(p1,p2);
}
if ( edges->IsEdge(p2,p3) == -1 )
{
edges->InsertEdge(p2,p3);
}
if ( edges->IsEdge(p3,p1) == -1 )
{
edges->InsertEdge(p3,p1);
}
for (k=0; k<3; k++)
{
pointUse[pts[k]] = 1;
}
}
}//if candidate face
}//if not boundary face or boundary faces requested
}//if tetra isn't being output
}//if tetra not output
}//for all tetras
//traverse tetras again, this time examining edges
for (i=0; i < numTetras; i++)
{
if ( tetraUse[i] == 1 ) //one means visited and discarded
{
Mesh->GetCellPoints(i, npts, tetraPts);
for (j=0; j < 6; j++)
{
p1 = tetraPts[edge[j][0]];
p2 = tetraPts[edge[j][1]];
if ((this->BoundingTriangulation ||
(p1 < numPoints && p2 < numPoints))
&& (edges->IsEdge(p1,p2) == -1) )
{
points->GetPoint(p1,x1);
points->GetPoint(p2,x2);
if ( (vtkMath::Distance2BetweenPoints(x1,x2)*0.25) <= alpha2 )
{
edges->InsertEdge(p1,p2);
pts[0] = p1;
pts[1] = p2;
output->InsertNextCell(VTK_LINE,2,pts);
pointUse[p1] = 1; pointUse[p2] = 1;
}
}//if edge a candidate
}//for all edges of tetra
}//if tetra not output
}//for all tetras
//traverse all points, create vertices if none used
for (ptId=0; ptId<(numPoints+6); ptId++)
{
if (!pointUse[ptId] && (ptId < numPoints || this->BoundingTriangulation))
{
pts[0] = ptId;
output->InsertNextCell(VTK_VERTEX,1,pts);
}
}
// update output
delete [] pointUse;
edges->Delete();
}
// Update output; free up supporting data structures.
//
if ( this->BoundingTriangulation )
{
output->SetPoints(points);
}
else
{
output->SetPoints(inPoints);
output->GetPointData()->PassData(input->GetPointData());
}
for (i=0; i<numTetras; i++)
{
if ( tetraUse[i] == 2 )
{
Mesh->GetCellPoints(i,npts,tetraPts);
output->InsertNextCell(VTK_TETRA,4,tetraPts);
}
}
vtkDebugMacro(<<"Generated " << output->GetNumberOfPoints() << " points and "
<< output->GetNumberOfCells() << " tetrahedra");
delete [] tetraUse;
cells->Delete();
holeTetras->Delete();
Mesh->Delete();
output->Squeeze();
return 1;
}
// This is a helper method used with InsertPoint() to create
// tetrahedronalizations of points. Its purpose is construct an initial
// Delaunay triangulation into which to inject other points. You must
// specify the center of a cubical bounding box and its length, as well
// as the numer of points to insert. The method returns a pointer to
// an unstructured grid. Use this pointer to manipulate the mesh as
// necessary. You must delete (with Delete()) the mesh when done.
// Note: This initialization method places points forming bounding octahedron
// at the end of the Mesh's point list. That is, InsertPoint() assumes that
// you will be inserting points between (0,numPtsToInsert-1).
vtkUnstructuredGrid *vtkDelaunay3D::InitPointInsertion(double center[3],
double length, vtkIdType numPtsToInsert, vtkPoints* &points)
{
double x[3], bounds[6];
vtkIdType tetraId;
vtkIdType pts[4];
vtkUnstructuredGrid *Mesh=vtkUnstructuredGrid::New();
this->NumberOfDuplicatePoints = 0;
this->NumberOfDegeneracies = 0;
points = vtkPoints::New();
points->Allocate(numPtsToInsert+6);
if ( length <= 0.0 )
{
length = 1.0;
}
bounds[0] = center[0] - length; bounds[1] = center[0] + length;
bounds[2] = center[1] - length; bounds[3] = center[1] + length;
bounds[4] = center[2] - length; bounds[5] = center[2] + length;
if ( this->Locator == NULL )
{
this->CreateDefaultLocator();
}
this->Locator->InitPointInsertion(points,bounds);
//create bounding octahedron: 6 points & 4 tetra
x[0] = center[0] - length;
x[1] = center[1];
x[2] = center[2];
this->Locator->InsertPoint(numPtsToInsert,x);
x[0] = center[0] + length;
x[1] = center[1];
x[2] = center[2];
this->Locator->InsertPoint(numPtsToInsert+1,x);
x[0] = center[0];
x[1] = center[1] - length;
x[2] = center[2];
this->Locator->InsertPoint(numPtsToInsert+2,x);
x[0] = center[0];
x[1] = center[1] + length;
x[2] = center[2];
this->Locator->InsertPoint(numPtsToInsert+3,x);
x[0] = center[0];
x[1] = center[1];
x[2] = center[2] - length;
this->Locator->InsertPoint(numPtsToInsert+4,x);
x[0] = center[0];
x[1] = center[1];
x[2] = center[2] + length;
this->Locator->InsertPoint(numPtsToInsert+5,x);
Mesh->Allocate(5*numPtsToInsert);
if (this->TetraArray)
{
delete this->TetraArray;
}
this->TetraArray = new vtkTetraArray(5*numPtsToInsert,numPtsToInsert);
//create bounding tetras (there are four)
pts[0] = numPtsToInsert + 4; pts[1] = numPtsToInsert + 5;
pts[2] = numPtsToInsert; pts[3] = numPtsToInsert + 2;
tetraId = Mesh->InsertNextCell(VTK_TETRA,4,pts);
this->InsertTetra(Mesh,points,tetraId);
pts[0] = numPtsToInsert + 4; pts[1] = numPtsToInsert + 5;
pts[2] = numPtsToInsert + 2; pts[3] = numPtsToInsert + 1;
tetraId = Mesh->InsertNextCell(VTK_TETRA,4,pts);
this->InsertTetra(Mesh,points,tetraId);
pts[0] = numPtsToInsert + 4; pts[1] = numPtsToInsert + 5;
pts[2] = numPtsToInsert + 1; pts[3] = numPtsToInsert + 3;
tetraId = Mesh->InsertNextCell(VTK_TETRA,4,pts);
this->InsertTetra(Mesh,points,tetraId);
pts[0] = numPtsToInsert + 4; pts[1] = numPtsToInsert + 5;
pts[2] = numPtsToInsert + 3; pts[3] = numPtsToInsert;
tetraId = Mesh->InsertNextCell(VTK_TETRA,4,pts);
this->InsertTetra(Mesh,points,tetraId);
Mesh->SetPoints(points);
points->Delete();
Mesh->BuildLinks();
// Keep track of change in references to points
this->References = new int [numPtsToInsert+6];
memset(this->References, 0, (numPtsToInsert+6)*sizeof(int));
return Mesh;
}
// This is a helper method used with InitPointInsertion() to create
// tetrahedronalizations of points. Its purpose is to inject point at
// coordinates specified into tetrahedronalization. The point id is an index
// into the list of points in the mesh structure. (See
// vtkDelaunay3D::InitPointInsertion() for more information.) When you have
// completed inserting points, traverse the mesh structure to extract desired
// tetrahedra (or tetra faces and edges). The holeTetras id list lists all the
// tetrahedra that are deleted (invalid) in the mesh structure.
void vtkDelaunay3D::InsertPoint(vtkUnstructuredGrid *Mesh, vtkPoints *points,
vtkIdType ptId, double x[3],
vtkIdList *holeTetras)
{
vtkIdType tetraId, numFaces;
int i;
vtkIdType nodes[4];
vtkIdType tetraNum, numTetras;
this->Tetras->Reset();
this->Faces->Reset();
// Find faces containing point. (Faces are found by deleting
// one or more tetrahedra "containing" point.) Tetrahedron contain point
// when they satisfy Delaunay criterion. (More than one tetra may contain
// a point if the point is on or near an edge or face.) For each face,
// create a tetrahedron. (The locator helps speed search of points
// in tetras.)
if ( (numFaces=this->FindEnclosingFaces(x, Mesh, this->Tetras,
this->Faces, this->Locator)) > 0 )
{
this->Locator->InsertPoint(ptId,x); //point is part of mesh now
numTetras = this->Tetras->GetNumberOfIds();
// create new tetra for each face
for (tetraNum=0; tetraNum < numFaces; tetraNum++)
{
// Define tetrahedron. The order of the points matters: points
// 0, 1, and 2 must appear in counterclockwise order when seen
// from point 3. When we get here, point ptId is inside the
// tetrahedron whose faces we're considering and we've
// guaranteed that the 3 points in this face are
// counterclockwise wrt the new point. That lets us create a
// new tetrahedron with the right ordering.
nodes[0] = this->Faces->GetId(3*tetraNum);
nodes[1] = this->Faces->GetId(3*tetraNum+1);
nodes[2] = this->Faces->GetId(3*tetraNum+2);
nodes[3] = ptId;
//either replace previously deleted tetra or create new one
if ( tetraNum < numTetras )
{
tetraId = this->Tetras->GetId(tetraNum);
Mesh->ReplaceCell(tetraId, 4, nodes);
}
else
{
tetraId = Mesh->InsertNextCell(VTK_TETRA,4,nodes);
}
// Update data structures
for (i=0; i<4; i++)
{
if ( this->References[nodes[i]] >= 0 )
{
Mesh->ResizeCellList(nodes[i],5);
this->References[nodes[i]] -= 5;
}
this->References[nodes[i]]++;
Mesh->AddReferenceToCell(nodes[i],tetraId);
}
this->InsertTetra(Mesh, points, tetraId);
}//for each face
// Sometimes there are more tetras deleted than created. These
// have to be accounted for because they leave a "hole" in the
// data structure. Keep track of them here...mark them deleted later.
for (tetraNum = numFaces; tetraNum < numTetras; tetraNum++ )
{
holeTetras->InsertNextId(this->Tetras->GetId(tetraNum));
}
}//if enclosing faces found
}
// Specify a spatial locator for merging points. By default,
// an instance of vtkMergePoints is used.
void vtkDelaunay3D::SetLocator(vtkIncrementalPointLocator *locator)
{
if ( this->Locator == locator )
{
return;
}
if ( this->Locator )
{
this->Locator->UnRegister(this);
this->Locator = NULL;
}
if ( locator )
{
locator->Register(this);
}
this->Locator = locator;
this->Modified();
}
void vtkDelaunay3D::CreateDefaultLocator()
{
if ( this->Locator == NULL )
{
this->Locator = vtkPointLocator::New();
vtkPointLocator::SafeDownCast( this->Locator )->SetDivisions(25,25,25);
}
}
// See whether point is in sphere of tetrahedron
int vtkDelaunay3D::InSphere(double x[3], vtkIdType tetraId)
{
double dist2;
vtkDelaunayTetra *tetra = this->TetraArray->GetTetra(tetraId);
// check if inside/outside circumcircle
dist2 = (x[0] - tetra->center[0]) * (x[0] - tetra->center[0]) +
(x[1] - tetra->center[1]) * (x[1] - tetra->center[1]) +
(x[2] - tetra->center[2]) * (x[2] - tetra->center[2]);
if ( dist2 < (0.9999999999L * tetra->r2) )
{
return 1;
}
else
{
return 0;
}
}
// Compute circumsphere and place into array of tetras
void vtkDelaunay3D::InsertTetra(vtkUnstructuredGrid *Mesh, vtkPoints *points,
vtkIdType tetraId)
{
double dx1[3], dx2[3], dx3[3], dx4[3], radius2, center[3];
vtkIdType *pts, npts;
Mesh->GetCellPoints(tetraId, npts, pts);
points->GetPoint(pts[0], dx1);
points->GetPoint(pts[1], dx2);
points->GetPoint(pts[2], dx3);
points->GetPoint(pts[3], dx4);
radius2 = vtkTetra::Circumsphere(dx1,dx2,dx3,dx4,center);
this->TetraArray->InsertTetra(tetraId, radius2, center);
}
void vtkDelaunay3D::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Alpha: " << this->Alpha << "\n";
os << indent << "Tolerance: " << this->Tolerance << "\n";
os << indent << "Offset: " << this->Offset << "\n";
os << indent << "Bounding Triangulation: "
<< (this->BoundingTriangulation ? "On\n" : "Off\n");
if ( this->Locator )
{
os << indent << "Locator: " << this->Locator << "\n";
}
else
{
os << indent << "Locator: (none)\n";
}
}
void vtkDelaunay3D::EndPointInsertion()
{
if (this->References)
{
delete [] this->References;
this->References = NULL;
}
}
unsigned long int vtkDelaunay3D::GetMTime()
{
unsigned long mTime=this->Superclass::GetMTime();
unsigned long time;
if ( this->Locator != NULL )
{
time = this->Locator->GetMTime();
mTime = ( time > mTime ? time : mTime );
}
return mTime;
}
static int GetTetraFaceNeighbor(vtkUnstructuredGrid *Mesh, vtkIdType tetraId,
vtkIdType p1, vtkIdType p2, vtkIdType p3,
vtkIdType& nei)
{
// gather necessary information
vtkCellLinks *links = Mesh->GetCellLinks();
int numCells = links->GetNcells(p1);
vtkIdType *cells = links->GetCells(p1);
int i;
vtkIdType *pts, npts;
//perform set operation
for (i=0; i < numCells; i++)
{
if ( cells[i] != tetraId )
{
Mesh->GetCellPoints(cells[i],npts,pts);
if ( (p2 == pts[0] || p2 == pts[1] || p2 == pts[2] || p2 == pts[3]) &&
(p3 == pts[0] || p3 == pts[1] || p3 == pts[2] || p3 == pts[3]) )
{
nei = cells[i];
break;
}
}//if not referring tetra
}//for all candidate cells
if ( i < numCells )
{
return 1;
}
else
{
return 0; //there is no neighbor
}
}
//----------------------------------------------------------------------------
int vtkDelaunay3D::FillInputPortInformation(int port, vtkInformation* info)
{
if(!this->Superclass::FillInputPortInformation(port, info))
{
return 0;
}
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPointSet");
return 1;
}
|