File: vtkElevationFilter.cxx

package info (click to toggle)
vtk 5.8.0-13
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 130,524 kB
  • sloc: cpp: 1,129,256; ansic: 708,203; tcl: 48,526; python: 20,875; xml: 6,779; yacc: 4,208; perl: 3,121; java: 2,788; lex: 931; sh: 660; asm: 471; makefile: 299
file content (144 lines) | stat: -rw-r--r-- 4,621 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkElevationFilter.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkElevationFilter.h"

#include "vtkCellData.h"
#include "vtkDataSet.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkSmartPointer.h"

vtkStandardNewMacro(vtkElevationFilter);

//----------------------------------------------------------------------------
vtkElevationFilter::vtkElevationFilter()
{
  this->LowPoint[0] = 0.0;
  this->LowPoint[1] = 0.0;
  this->LowPoint[2] = 0.0;

  this->HighPoint[0] = 0.0;
  this->HighPoint[1] = 0.0;
  this->HighPoint[2] = 1.0;

  this->ScalarRange[0] = 0.0;
  this->ScalarRange[1] = 1.0;
}

//----------------------------------------------------------------------------
vtkElevationFilter::~vtkElevationFilter()
{
}

//----------------------------------------------------------------------------
void vtkElevationFilter::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
  os << indent << "Low Point: ("
     << this->LowPoint[0] << ", "
     << this->LowPoint[1] << ", "
     << this->LowPoint[2] << ")\n";
  os << indent << "High Point: ("
     << this->HighPoint[0] << ", "
     << this->HighPoint[1] << ", "
     << this->HighPoint[2] << ")\n";
  os << indent << "Scalar Range: ("
     << this->ScalarRange[0] << ", "
     << this->ScalarRange[1] << ")\n";
}

//----------------------------------------------------------------------------
int vtkElevationFilter::RequestData(vtkInformation*,
                                    vtkInformationVector** inputVector,
                                    vtkInformationVector* outputVector)
{
  // Get the input and output data objects.
  vtkDataSet* input = vtkDataSet::GetData(inputVector[0]);
  vtkDataSet* output = vtkDataSet::GetData(outputVector);

  // Check the size of the input.
  vtkIdType numPts = input->GetNumberOfPoints();
  if(numPts < 1)
    {
    vtkDebugMacro("No input!");
    return 1;
    }

  // Allocate space for the elevation scalar data.
  vtkSmartPointer<vtkFloatArray> newScalars =
    vtkSmartPointer<vtkFloatArray>::New();
  newScalars->SetNumberOfTuples(numPts);

  // Set up 1D parametric system and make sure it is valid.
  double diffVector[3] =
    { this->HighPoint[0] - this->LowPoint[0],
      this->HighPoint[1] - this->LowPoint[1],
      this->HighPoint[2] - this->LowPoint[2] };
  double length2 = vtkMath::Dot(diffVector, diffVector);
  if(length2 <= 0)
    {
    vtkErrorMacro("Bad vector, using (0,0,1).");
    diffVector[0] = 0;
    diffVector[1] = 0;
    diffVector[2] = 1;
    length2 = 1.0;
    }

  // Support progress and abort.
  vtkIdType tenth = (numPts >= 10? numPts/10 : 1);
  double numPtsInv = 1.0/numPts;
  int abort = 0;

  // Compute parametric coordinate and map into scalar range.
  double diffScalar = this->ScalarRange[1] - this->ScalarRange[0];
  vtkDebugMacro("Generating elevation scalars!");
  for(vtkIdType i=0; i < numPts && !abort; ++i)
    {
    // Periodically update progress and check for an abort request.
    if(i % tenth == 0)
      {
      this->UpdateProgress((i+1)*numPtsInv);
      abort = this->GetAbortExecute();
      }

    // Project this input point into the 1D system.
    double x[3];
    input->GetPoint(i, x);
    double v[3] = { x[0] - this->LowPoint[0],
                    x[1] - this->LowPoint[1],
                    x[2] - this->LowPoint[2] };
    double s = vtkMath::Dot(v, diffVector) / length2;
    s = (s < 0.0 ? 0.0 : s > 1.0 ? 1.0 : s);

    // Store the resulting scalar value.
    newScalars->SetValue(i, this->ScalarRange[0] + s*diffScalar);
    }

  // Copy all the input geometry and data to the output.
  output->CopyStructure(input);
  output->GetPointData()->PassData(input->GetPointData());
  output->GetCellData()->PassData(input->GetCellData());

  // Add the new scalars array to the output.
  newScalars->SetName("Elevation");
  output->GetPointData()->AddArray(newScalars);
  output->GetPointData()->SetActiveScalars("Elevation");

  return 1;
}