1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHull.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkHull.h"
#include "vtkCellArray.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPlanes.h"
#include "vtkPolyData.h"
vtkStandardNewMacro(vtkHull);
// Construct an the hull object with no planes
vtkHull::vtkHull()
{
this->Planes = NULL;
this->PlanesStorageSize = 0;
this->NumberOfPlanes = 0;
}
// Destructor for a hull object - remove the planes if necessary
vtkHull::~vtkHull()
{
if ( this->Planes )
{
delete [] this->Planes;
this->Planes = NULL;
}
}
// Remove all planes.
void vtkHull::RemoveAllPlanes()
{
if ( this->Planes )
{
delete [] this->Planes;
this->Planes = NULL;
}
this->PlanesStorageSize = 0;
this->NumberOfPlanes = 0;
this->Modified();
}
// Add a plane. The vector (A,B,C) is the plane normal and is from the
// plane equation Ax + By + Cz + D = 0. The normal should point outwards
// away from the center of the hull.
int vtkHull::AddPlane( double A, double B, double C )
{
double *tmpPointer;
int i;
double norm, dotproduct;
// Normalize the direction,
// and make sure the vector has a length.
norm = sqrt( A*A + B*B + C*C );
if ( norm == 0.0 )
{
vtkErrorMacro( << "Zero length vector not allowed for plane normal!" );
return -VTK_LARGE_INTEGER;
}
A /= norm;
B /= norm;
C /= norm;
// Check that it is at least somewhat different from the other
// planes we have so far - can't have a normalized dot product of
// nearly 1.
for ( i = 0; i < this->NumberOfPlanes; i++ )
{
dotproduct =
A * this->Planes[i*4 + 0] +
B * this->Planes[i*4 + 1] +
C * this->Planes[i*4 + 2];
//If planes are parallel, we already have the plane.
//Indicate this with the appropriate return value.
if ( dotproduct > 0.99999 && dotproduct < 1.00001 )
{
return -(i+1);
}
}
// If adding this plane would put us over the amount of space we've
// allocated for planes, then we'll have to allocated some more space
if ( (this->NumberOfPlanes+1) >= this->PlanesStorageSize )
{
// Hang onto the previous set of planes
tmpPointer = this->Planes;
// Increase our storage
if ( this->PlanesStorageSize <= 0 )
{
this->PlanesStorageSize = 100;
}
else
{
this->PlanesStorageSize *= 2;
}
this->Planes = new double [this->PlanesStorageSize * 4];
if ( !this->Planes )
{
vtkErrorMacro( << "Unable to allocate space for planes" );
this->Planes = tmpPointer;
return -VTK_LARGE_INTEGER;
}
// Copy the planes and delete the old storage space
for ( i = 0; i < this->NumberOfPlanes*4; i++ )
{
this->Planes[i] = tmpPointer[i];
}
if ( tmpPointer )
{
delete [] tmpPointer;
}
}
// Add the plane at the end of the array.
// The fourth element doesn't actually need to be set, but it
// eliminates a purify uninitialized memory copy error if it is set
i = this->NumberOfPlanes;
this->Planes[i*4 + 0] = A;
this->Planes[i*4 + 1] = B;
this->Planes[i*4 + 2] = C;
this->Planes[i*4 + 3] = 0.0;
this->NumberOfPlanes++;
this->Modified();
// Return the index to this plane so that it can be set later
return i;
}
// Add a plane, passing the plane normal vector as a double array instead
// of three doubles.
int vtkHull::AddPlane( double plane[3] )
{
return this->AddPlane( plane[0], plane[1], plane[2] );
}
// Set a specific plane - this plane should already have been added with
// AddPlane, and the return value then used to modifiy the plane normal
// with this method.
void vtkHull::SetPlane( int i, double A, double B, double C )
{
double norm;
// Make sure this is a plane that was already added
if ( i < 0 || i >= this->NumberOfPlanes )
{
vtkErrorMacro( << "Invalid index in SetPlane" );
return;
}
double *plane = this->Planes + i*4;
if ( A == plane[0] && B == plane[1] && C == plane[2] )
{
return; //no modified
}
// Set plane that has index i. Normalize the direction,
// and make sure the vector has a length.
norm = sqrt( A*A + B*B + C*C );
if ( norm == 0.0 )
{
vtkErrorMacro( << "Zero length vector not allowed for plane normal!" );
return;
}
this->Planes[i*4 + 0] = A/norm;
this->Planes[i*4 + 1] = B/norm;
this->Planes[i*4 + 2] = C/norm;
this->Modified();
}
// Set a specific plane (that has already been added) - passing the plane
// normal as a double array
void vtkHull::SetPlane( int i, double plane[3] )
{
this->SetPlane( i, plane[0], plane[1], plane[2] );
}
int vtkHull::AddPlane( double A, double B, double C, double D )
{
int i, j;
if ( (i=this->AddPlane(A,B,C)) >= 0 )
{
this->Planes[4*i + 3] = D;
}
else if ( i >= -this->NumberOfPlanes )
{//pick the D that minimizes the convex set
j = -i - 1;
this->Planes[4*j + 3] = (D > this->Planes[4*j + 3] ?
D : this->Planes[4*j + 3]);
}
return i;
}
int vtkHull::AddPlane( double plane[3], double D )
{
int i, j;
if ( (i=this->AddPlane(plane[0],plane[1],plane[2])) >= 0 )
{
this->Planes[4*i + 3] = D;
}
else if ( i >= -this->NumberOfPlanes )
{//pick the D that minimizes the convex set
j = -i - 1;
this->Planes[4*j + 3] = (D > this->Planes[4*j + 3] ?
D : this->Planes[4*j + 3]);
}
return i;
}
void vtkHull::SetPlane( int i, double A, double B, double C, double D )
{
if ( i >= 0 && i < this->NumberOfPlanes )
{
double *plane = this->Planes + 4*i;
if ( plane[0] != A || plane[1] != B || plane[2] != C ||
plane[3] != D )
{
this->SetPlane(i, A,B,C);
plane[3] = D;
this->Modified();
}
}
}
void vtkHull::SetPlane( int i, double plane[3], double D )
{
this->SetPlane(i, plane[0], plane[1], plane[2], D);
}
void vtkHull::SetPlanes( vtkPlanes *planes )
{
this->RemoveAllPlanes();
// Add the planes to the hull
if ( planes )
{
int i, idx;
vtkPoints *points = planes->GetPoints();
vtkDataArray *normals = planes->GetNormals();
if ( points && normals )
{
for (i=0; i<planes->GetNumberOfPlanes(); i++)
{
double point[3];
points->GetPoint(i, point);
if ( (idx=this->AddPlane(normals->GetTuple(i))) >= 0)
{
idx *= 4;
this->Planes[idx + 3] = -(this->Planes[idx]*point[0] +
this->Planes[idx+1]*point[1] +
this->Planes[idx+2]*point[2]);
}
else if ( idx >= -this->NumberOfPlanes )
{ //planes are parallel, take the one that minimizes the convex set
idx = -4*(idx+1);
double D = -(this->Planes[idx]*point[0] +
this->Planes[idx+1]*point[1] +
this->Planes[idx+2]*point[2]);
this->Planes[idx + 3] = (D > this->Planes[idx + 3] ?
D : this->Planes[idx + 3]);
}//special parallel planes case
}//for all planes
}//if points and normals
}//if planes defined
return;
}
// Add the six planes that represent the faces on a cube
void vtkHull::AddCubeFacePlanes()
{
this->AddPlane( 1.0, 0.0, 0.0 );
this->AddPlane( -1.0, 0.0, 0.0 );
this->AddPlane( 0.0, 1.0, 0.0 );
this->AddPlane( 0.0, -1.0, 0.0 );
this->AddPlane( 0.0, 0.0, 1.0 );
this->AddPlane( 0.0, 0.0, -1.0 );
}
// Add the twelve planes that represent the edges on a cube - halfway between
// the two adjacent face planes
void vtkHull::AddCubeEdgePlanes()
{
this->AddPlane( 1.0, 1.0, 0.0 );
this->AddPlane( 1.0, -1.0, 0.0 );
this->AddPlane( -1.0, 1.0, 0.0 );
this->AddPlane( -1.0, -1.0, 0.0 );
this->AddPlane( 1.0, 0.0, 1.0 );
this->AddPlane( 1.0, 0.0, -1.0 );
this->AddPlane( -1.0, 0.0, 1.0 );
this->AddPlane( -1.0, 0.0, -1.0 );
this->AddPlane( 0.0, 1.0, 1.0 );
this->AddPlane( 0.0, 1.0, -1.0 );
this->AddPlane( 0.0, -1.0, 1.0 );
this->AddPlane( 0.0, -1.0, -1.0 );
}
// Add the eight planes that represent the vertices on a cube - partway
// between the three adjacent face planes.
void vtkHull::AddCubeVertexPlanes()
{
this->AddPlane( 1.0, 1.0, 1.0 );
this->AddPlane( 1.0, 1.0, -1.0 );
this->AddPlane( 1.0, -1.0, 1.0 );
this->AddPlane( 1.0, -1.0, -1.0 );
this->AddPlane( -1.0, 1.0, 1.0 );
this->AddPlane( -1.0, 1.0, -1.0 );
this->AddPlane( -1.0, -1.0, 1.0 );
this->AddPlane( -1.0, -1.0, -1.0 );
}
// Add the planes that represent the normals of the vertices of a
// polygonal sphere formed by recursively subdividing the triangles in
// an octahedron. Each triangle is subdivided by connecting the
// midpoints of the edges thus forming 4 smaller triangles. The level
// indicates how many subdivisions to do with a level of 0 used to add
// the 6 planes from the original octahedron, level 1 will add 18
// planes, and so on.
void vtkHull::AddRecursiveSpherePlanes( int level )
{
int numTriangles;
double *points;
int *triangles;
int *validPoint;
int triCount, pointCount;
int i, j, k, loop, limit;
double midpoint[3][3];
double midindex[3];
int A, B, C;
if ( level < 0 )
{
vtkErrorMacro( << "Cannot have a level less than 0!" );
return;
}
if ( level > 10 )
{
vtkErrorMacro( << "Cannot have a level greater than 10!" );
return;
}
numTriangles = static_cast<int>(8.0*pow(4.0,static_cast<double>(level)));
// Create room for the triangles and points
// We will also need to keep track of which points are
// duplicates so keep a validPoint array for this
points = new double[3*numTriangles];
triangles = new int[3*numTriangles];
validPoint = new int[3*numTriangles];
// Add the initial points
i = 0;
points[i++] = 0.0; points[i++] = 1.0; points[i++] = 0.0;
points[i++] = -1.0; points[i++] = 0.0; points[i++] = 0.0;
points[i++] = 0.0; points[i++] = 0.0; points[i++] = -1.0;
points[i++] = 1.0; points[i++] = 0.0; points[i++] = 0.0;
points[i++] = 0.0; points[i++] = 0.0; points[i++] = 1.0;
points[i++] = 0.0; points[i++] = -1.0; points[i++] = 0.0;
pointCount = i / 3;
// Add the initial triangles
i = 0;
triangles[i++] = 0; triangles[i++] = 1; triangles[i++] = 2;
triangles[i++] = 0; triangles[i++] = 2; triangles[i++] = 3;
triangles[i++] = 0; triangles[i++] = 3; triangles[i++] = 4;
triangles[i++] = 0; triangles[i++] = 4; triangles[i++] = 1;
triangles[i++] = 5; triangles[i++] = 1; triangles[i++] = 2;
triangles[i++] = 5; triangles[i++] = 2; triangles[i++] = 3;
triangles[i++] = 5; triangles[i++] = 3; triangles[i++] = 4;
triangles[i++] = 5; triangles[i++] = 4; triangles[i++] = 1;
triCount = i / 3;
// loop over the levels adding points and triangles
for ( loop = 0; loop < level; loop++ )
{
limit = triCount;
for ( i = 0; i < limit; i++ )
{
for ( j = 0; j < 3; j++ )
{
A = j;
B = (j+1) % 3;
for ( k = 0; k < 3; k++ )
{
midpoint[j][k] = ( points[3*triangles[i*3 + A] + k] +
points[3*triangles[i*3 + B] + k] ) * 0.5;
points[pointCount*3 + k] = midpoint[j][k];
}
midindex[j] = pointCount;
pointCount++;
}
A = triangles[i*3 + 0];
B = triangles[i*3 + 1];
C = triangles[i*3 + 2];
// Add the middle triangle in place of the one we just processed
triangles[i*3 + 0] = static_cast<int>(midindex[0]);
triangles[i*3 + 1] = static_cast<int>(midindex[1]);
triangles[i*3 + 2] = static_cast<int>(midindex[2]);
// Now add the 3 outer triangles at the end of the triangle list
triangles[triCount*3 + 0] = static_cast<int>(midindex[0]);
triangles[triCount*3 + 1] = B;
triangles[triCount*3 + 2] = static_cast<int>(midindex[1]);
triCount++;
triangles[triCount*3 + 0] = static_cast<int>(midindex[1]);
triangles[triCount*3 + 1] = C;
triangles[triCount*3 + 2] = static_cast<int>(midindex[2]);
triCount++;
triangles[triCount*3 + 0] = static_cast<int>(midindex[2]);
triangles[triCount*3 + 1] = A;
triangles[triCount*3 + 2] = static_cast<int>(midindex[0]);
triCount++;
}
}
// Mark duplicate points as invalid so that we don't try to add the
// same plane twice
for ( i = 0; i < pointCount; i++ )
{
validPoint[i] = 1;
for ( j = 0; j < i; j++ )
{
if ( fabs(points[i*3 + 0] - points[j*3 + 0]) < 0.001 &&
fabs(points[i*3 + 1] - points[j*3 + 1]) < 0.001 &&
fabs(points[i*3 + 2] - points[j*3 + 2]) < 0.001 )
{
validPoint[i] = 0;
break;
}
}
}
for ( i = 0; i < pointCount; i++ )
{
if ( validPoint[i] )
{
this->AddPlane( points[i*3 + 0], points[i*3 + 1], points[i*3 + 2] );
}
}
delete [] points;
delete [] triangles;
delete [] validPoint;
}
// Create the n-sided convex hull from the input geometry according to the
// set of planes.
int vtkHull::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPolyData *input = vtkPolyData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkIdType numPoints;
vtkPoints *outPoints;
vtkCellArray *outPolys;
double *bounds = input->GetBounds();
// Get the number of points in the input data
numPoints = input->GetNumberOfPoints();
// There should be at least three points for this to work.
if ( numPoints < 3 )
{
vtkErrorMacro( << "There must be >= 3 points in the input data!!!\n" );
return 1;
}
// There should be at least four planes for this to work. There will need
// to be more planes than four if any of them are parallel.
if ( this->NumberOfPlanes < 4 )
{
vtkErrorMacro( << "There must be >= 4 planes!!!\n" );
return 1;
}
// Create a new set of points and polygons into which the results will
// be stored
outPoints = vtkPoints::New();
outPolys = vtkCellArray::New();
// Compute the D value for each plane according to the vertices in the
// geometry
this->ComputePlaneDistances(input);
this->UpdateProgress(0.25);
// Create a large polygon representing each plane, and clip that polygon
// against all other planes to form the polygons of the hull.
this->ClipPolygonsFromPlanes( outPoints, outPolys, bounds );
this->UpdateProgress(0.80);
// Set the output vertices and polygons
output->SetPoints( outPoints );
output->SetPolys( outPolys );
// Delete the temporary storage
outPoints->Delete();
outPolys->Delete();
return 1;
}
// Compute the D value for each plane. This is the largest D value obtained
// by passing a plane with the specified normal through each vertex in the
// geometry. This plane will have a normal pointing in towards the center of
// the hull.
void vtkHull::ComputePlaneDistances(vtkPolyData *input)
{
vtkIdType i;
int j;
double coord[3];
double v;
// Initialize all planes to the first vertex value
input->GetPoint( 0, coord );
for ( j = 0; j < this->NumberOfPlanes; j++ )
{
this->Planes[j*4 + 3] = -( this->Planes[j*4 + 0] * coord[0] +
this->Planes[j*4 + 1] * coord[1] +
this->Planes[j*4 + 2] * coord[2] );
}
// For all other vertices in the geometry, check if it produces a larger
// D value for each of the planes.
for ( i = 1; i < input->GetNumberOfPoints(); i++ )
{
input->GetPoint( i, coord );
for ( j = 0; j < this->NumberOfPlanes; j++ )
{
v = -( this->Planes[j*4 + 0] * coord[0] +
this->Planes[j*4 + 1] * coord[1] +
this->Planes[j*4 + 2] * coord[2] );
// negative means further in + direction of plane
if ( v < this->Planes[j*4 + 3] )
{
this->Planes[j*4 + 3] = v;
}
}
}
}
// Given the set of planes, create a large polygon for each, then use all the
// other planes to clip this polygon.
void vtkHull::ClipPolygonsFromPlanes( vtkPoints *outPoints,
vtkCellArray *outPolys,
double *bounds)
{
int i, j, k, q;
double previousD, d, crosspoint;
double *verts, *newVerts, *tmpVerts;
int vertCount, newVertCount;
vtkIdType *pnts;
// Use two arrays to store the vertices of the polygon
verts = new double[3*(this->NumberOfPlanes+1)];
newVerts = new double[3*(this->NumberOfPlanes+1)];
// We need an array to store the indices for the polygon
pnts = new vtkIdType[this->NumberOfPlanes-1];
// We have no vertices yet
//vertCount = 0;
// For each plane, create a polygon (if it gets completely clipped there
// won't be a polygon)
for ( i = 0; i < this->NumberOfPlanes; i++ )
{
// Create the initial polygon - this is a large square around the
// projected center of the object (projected onto this plane). We
// now have four vertices.
this->CreateInitialPolygon( verts, i, bounds );
vertCount = 4;
// Clip this polygon by each plane.
for ( j = 0; j < this->NumberOfPlanes; j++ )
{
// Stop if we have removed too many vertices and no longer have
// a polygon
if ( vertCount <= 2 )
{
break;
}
// Otherwise, if this is not the plane we are working on, clip
// it by this plane.
if ( i != j )
{
// Test each pair of vertices to make sure this edge
// isn't clipped. If the d values are different, it is
// clipped - find the crossing point and add that as
// a new vertex. If the second vertex's d is greater than 0,
// then keep this vertex.
newVertCount = 0;
previousD =
this->Planes[j*4 + 0] * verts[(vertCount-1)*3 + 0] +
this->Planes[j*4 + 1] * verts[(vertCount-1)*3 + 1] +
this->Planes[j*4 + 2] * verts[(vertCount-1)*3 + 2] +
this->Planes[j*4 + 3];
for ( k = 0; k < vertCount; k++ )
{
d =
this->Planes[j*4 + 0] * verts[k*3 + 0] +
this->Planes[j*4 + 1] * verts[k*3 + 1] +
this->Planes[j*4 + 2] * verts[k*3 + 2] +
this->Planes[j*4 + 3];
if ( (previousD < 0.0) != (d < 0.0) )
{
if ( k > 0 )
{
q = k - 1;
}
else
{
q = vertCount - 1;
}
crosspoint = -previousD / (d - previousD);
newVerts[newVertCount*3 + 0] =
verts[q*3+0] + crosspoint*(verts[k*3+0] - verts[q*3+0]);
newVerts[newVertCount*3 + 1] =
verts[q*3+1] + crosspoint*(verts[k*3+1] - verts[q*3+1]);
newVerts[newVertCount*3 + 2] =
verts[q*3+2] + crosspoint*(verts[k*3+2] - verts[q*3+2]);
newVertCount++;
}
if ( d < 0.0 )
{
newVerts[newVertCount*3 + 0] = verts[k*3 + 0];
newVerts[newVertCount*3 + 1] = verts[k*3 + 1];
newVerts[newVertCount*3 + 2] = verts[k*3 + 2];
newVertCount++;
}
previousD = d;
} //for all vertices of this plane
tmpVerts = newVerts;
newVerts = verts;
verts = tmpVerts;
vertCount = newVertCount;
}
} //for each potentially intersecting plane
if ( vertCount > 0 )
{
for ( j = 0; j < vertCount; j++ )
{
pnts[j] = outPoints->InsertNextPoint( (verts + j*3) );
}
outPolys->InsertNextCell( vertCount, pnts );
}
} //for each plane
delete [] verts;
delete [] newVerts;
delete [] pnts;
}
void vtkHull::CreateInitialPolygon( double *verts, int i, double *bounds)
{
double center[3], d, planeCenter[3];
double v1[3], v2[3], norm, dotProduct;
int j;
center[0] = ( bounds[0] + bounds[1] ) * 0.5;
center[1] = ( bounds[2] + bounds[3] ) * 0.5;
center[2] = ( bounds[4] + bounds[5] ) * 0.5;
d =
this->Planes[i*4 + 0] * center[0] +
this->Planes[i*4 + 1] * center[1] +
this->Planes[i*4 + 2] * center[2] +
this->Planes[i*4 + 3];
planeCenter[0] = center[0] - d * this->Planes[i*4 + 0];
planeCenter[1] = center[1] - d * this->Planes[i*4 + 1];
planeCenter[2] = center[2] - d * this->Planes[i*4 + 2];
dotProduct = 1.0;
j = i;
while (dotProduct > 0.99999 || dotProduct < -0.99999)
{
j++;
if ( j >= this->NumberOfPlanes )
{
j = 0;
}
dotProduct =
this->Planes[i*4 + 0] * this->Planes[j*4 + 0] +
this->Planes[i*4 + 1] * this->Planes[j*4 + 1] +
this->Planes[i*4 + 2] * this->Planes[j*4 + 2];
}
v1[0] =
this->Planes[j*4 + 1] * this->Planes[i*4 + 2] -
this->Planes[j*4 + 2] * this->Planes[i*4 + 1];
v1[1] =
this->Planes[j*4 + 2] * this->Planes[i*4 + 0] -
this->Planes[j*4 + 0] * this->Planes[i*4 + 2];
v1[2] =
this->Planes[j*4 + 0] * this->Planes[i*4 + 1] -
this->Planes[j*4 + 1] * this->Planes[i*4 + 0];
norm = sqrt( (v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2]) );
v1[0] /= norm;
v1[1] /= norm;
v1[2] /= norm;
v2[0] =
v1[1] * this->Planes[i*4 + 2] -
v1[2] * this->Planes[i*4 + 1];
v2[1] =
v1[2] * this->Planes[i*4 + 0] -
v1[0] * this->Planes[i*4 + 2];
v2[2] =
v1[0] * this->Planes[i*4 + 1] -
v1[1] * this->Planes[i*4 + 0];
norm = sqrt(v2[0]*v2[0] + v2[1]*v2[1] + v2[2]*v2[2]);
v2[0] /= norm;
v2[1] /= norm;
v2[2] /= norm;
d =
(bounds[1] - bounds[0]) +
(bounds[3] - bounds[2]) +
(bounds[5] - bounds[4]);
verts[0*3 + 0] = planeCenter[0] - d * v1[0] - d * v2[0];
verts[0*3 + 1] = planeCenter[1] - d * v1[1] - d * v2[1];
verts[0*3 + 2] = planeCenter[2] - d * v1[2] - d * v2[2];
verts[1*3 + 0] = planeCenter[0] - d * v1[0] + d * v2[0];
verts[1*3 + 1] = planeCenter[1] - d * v1[1] + d * v2[1];
verts[1*3 + 2] = planeCenter[2] - d * v1[2] + d * v2[2];
verts[2*3 + 0] = planeCenter[0] + d * v1[0] + d * v2[0];
verts[2*3 + 1] = planeCenter[1] + d * v1[1] + d * v2[1];
verts[2*3 + 2] = planeCenter[2] + d * v1[2] + d * v2[2];
verts[3*3 + 0] = planeCenter[0] + d * v1[0] - d * v2[0];
verts[3*3 + 1] = planeCenter[1] + d * v1[1] - d * v2[1];
verts[3*3 + 2] = planeCenter[2] + d * v1[2] - d * v2[2];
}
void vtkHull::GenerateHull(vtkPolyData *pd, double xmin, double xmax,
double ymin, double ymax, double zmin, double zmax)
{
double bounds[6];
bounds[0] = xmin; bounds[1] = xmax;
bounds[2] = ymin; bounds[3] = ymax;
bounds[4] = zmin; bounds[5] = zmax;
this->GenerateHull(pd, bounds);
}
void vtkHull::GenerateHull(vtkPolyData *pd, double *bounds)
{
vtkPoints *newPoints;
vtkCellArray *newPolys;
// There should be at least four planes for this to work. There will need
// to be more planes than four if any of them are parallel.
if ( this->NumberOfPlanes < 4 )
{
vtkErrorMacro( << "There must be >= 4 planes!!!" );
return;
}
// Create a new set of points and polygons into which the results will
// be stored
newPoints = vtkPoints::New();
newPoints->Allocate(this->NumberOfPlanes*3);
newPolys = vtkCellArray::New();
newPolys->Allocate(newPolys->EstimateSize(this->NumberOfPlanes,3));
this->ClipPolygonsFromPlanes( newPoints, newPolys, bounds );
pd->SetPoints(newPoints);
pd->SetPolys(newPolys);
newPoints->Delete();
newPolys->Delete();
pd->Squeeze();
}
// Print the object
void vtkHull::PrintSelf(ostream& os, vtkIndent indent)
{
int i;
this->Superclass::PrintSelf(os,indent);
os << indent << "Number Of Planes: " << this->NumberOfPlanes << endl;
for ( i = 0; i < this->NumberOfPlanes; i++ )
{
os << indent << "Plane " << i << ": "
<< this->Planes[i*4] << " "
<< this->Planes[i*4+1] << " "
<< this->Planes[i*4+2] << " "
<< this->Planes[i*4+3] << endl;
}
}
|