File: vtkMatrixMathFilter.cxx

package info (click to toggle)
vtk 5.8.0-13
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 130,524 kB
  • sloc: cpp: 1,129,256; ansic: 708,203; tcl: 48,526; python: 20,875; xml: 6,779; yacc: 4,208; perl: 3,121; java: 2,788; lex: 931; sh: 660; asm: 471; makefile: 299
file content (241 lines) | stat: -rw-r--r-- 7,281 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkObject.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkMatrixMathFilter.h"
#include "verdict.h"

#include "vtkCellData.h"
#include "vtkDataSet.h"
#include "vtkDoubleArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkSmartPointer.h"

vtkStandardNewMacro(vtkMatrixMathFilter);

vtkMatrixMathFilter::~vtkMatrixMathFilter ()
{
}

vtkMatrixMathFilter::vtkMatrixMathFilter ()
{
  this->Operation = NONE;
  this->SetInputArrayToProcess(0, 0, 0,
    vtkDataObject::FIELD_ASSOCIATION_POINTS_THEN_CELLS,
    vtkDataSetAttributes::TENSORS);
}

void vtkMatrixMathFilter::PrintSelf (ostream& os, vtkIndent indent)
{
  static const char* OperationNames [] =
  {
    "None",
    "Determinant",
    "Eigenvalue"
    "Eigenvector",
    "Inverse",
  };

  this->Superclass::PrintSelf(os, indent);
  os << indent << "Operation : "
     << OperationNames[this->Operation] << endl;
}

int vtkMatrixMathFilter::RequestData
(vtkInformation* vtkNotUsed(request),
 vtkInformationVector** inputVector,
 vtkInformationVector* outputVector)
{
  // get the info objects
  vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  // get the input and output
  vtkDataSet* in = vtkDataSet::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkDataSet* out = vtkDataSet::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  // Copy input to get a start point
  out->CopyStructure(in);

  int association = vtkDataObject::FIELD_ASSOCIATION_NONE;
  vtkDataArray* inTensors =
    this->GetInputArrayToProcess(0, inputVector, association);

  bool const pointQuality =
    vtkDataObject::FIELD_ASSOCIATION_POINTS == association;
  bool const cellQuality  =
    vtkDataObject::FIELD_ASSOCIATION_CELLS  == association;
  if (!pointQuality && !cellQuality)
    {
    vtkWarningMacro("Unknown association " << association);
    return 1;
    }

  vtkIdType const nCells  = in->GetNumberOfCells ();
  vtkIdType const nPoints = in->GetNumberOfPoints();
  if ((pointQuality && 0 == nPoints) || (cellQuality && 0 == nCells))
    {
    vtkWarningMacro("No data to work.");
    return 1;
    }

  // Allocate storage for the computation
  vtkSmartPointer<vtkDoubleArray> quality =
    vtkSmartPointer<vtkDoubleArray>::New();
  // Set different number of component and name depending on the quality
  switch (this->GetOperation())
    {
    case DETERMINANT :
      quality->SetName("Determinant");
      quality->SetNumberOfComponents(1);
      break;
    case EIGENVALUE :
      quality->SetName("Eigenvalue");
      quality->SetNumberOfComponents(3);
      break;
    case EIGENVECTOR :
      quality->SetName("Eigenvector");
      quality->SetNumberOfComponents(9);
      break;
    case INVERSE :
      quality->SetName("Inverse");
      quality->SetNumberOfComponents(9);
      break;
    default:
      vtkWarningMacro("Bad Operation (" << this->GetOperation() << ")");
      return 1;
    }
  quality->SetNumberOfTuples(pointQuality ? nPoints : nCells);

  // Support progress and abort.
  vtkIdType const tenth = (nCells >= 10 ? nCells/10 : 1);
  double const nCellInv = 1./nCells;

  // Actual computation of the selected quality
  for (vtkIdType i = 0, n = (pointQuality ? nPoints : nCells); i < n; ++i)
    {
    // Periodically update progress and check for an abort request.
    if (0 == i % tenth)
      {
      this->UpdateProgress((i+1)*nCellInv);
      if (this->GetAbortExecute()) { break; }
      }

    // Interpret the associated data as a 3 by 3 matrix and evaluate it for the
    // requested quality measure.
    switch (this->GetOperation())
      {
      case DETERMINANT :
        {
        double const q = vtkMath::Determinant3x3(
          reinterpret_cast<double(*)[3]>(inTensors->GetTuple(i)));
        quality->SetTuple(i, &q);
        break;
        }
      case EIGENVALUE :
      case EIGENVECTOR :
        {
        double* d = inTensors->GetTuple(i);
        double  w[3]={0}, v[9]={0}, t[]={d[1]-d[3], d[2]-d[6], d[5]-d[7]};

        // Use Jacobi iterative method only if the matrix is real symmetric.
        // Return singular values (all zeros) all other cases.
        if (-1e-5 <= t[0] && t[0] <= 1e-5 &&
            -1e-5 <= t[1] && t[1] <= 1e-5 &&
            -1e-5 <= t[2] && t[2] <= 1e-5)
          {
          // I have to do this conversion due to the Jacobi implementation.
          double* dd [] = {d, d+3, d+6};
          double* vv [] = {v, v+3, v+6};
          vtkMath::Jacobi(dd, w, vv);
          }

        if (EIGENVALUE == this->GetOperation())
          {
          quality->SetTuple(i, w);
          }
        else
          {
          quality->SetTuple(i, v);
          }
        break;
        }
      case INVERSE :
        {
        double AI [3][3] = {{0}}, (*A) [3]
          = reinterpret_cast<double(*)[3]>(inTensors->GetTuple(i));

        // vtkMath::Invert3x3 should quite fit here, unfortunately, it does not
        // check for matrix singularity which in the worest case leads to divide
        // by zero.
        // Below is a copy of the code with the necessary check.

        double a1 = A[0][0]; double b1 = A[0][1]; double c1 = A[0][2];
        double a2 = A[1][0]; double b2 = A[1][1]; double c2 = A[1][2];
        double a3 = A[2][0]; double b3 = A[2][1]; double c3 = A[2][2];

        // Compute the adjoint
        double d1 = vtkMath::Determinant2x2(b2, b3, c2, c3);
        double d2 =-vtkMath::Determinant2x2(a2, a3, c2, c3);
        double d3 = vtkMath::Determinant2x2(a2, a3, b2, b3);

        double e1 =-vtkMath::Determinant2x2(b1, b3, c1, c3);
        double e2 = vtkMath::Determinant2x2(a1, a3, c1, c3);
        double e3 =-vtkMath::Determinant2x2(a1, a3, b1, b3);

        double f1 = vtkMath::Determinant2x2(b1, b2, c1, c2);
        double f2 =-vtkMath::Determinant2x2(a1, a2, c1, c2);
        double f3 = vtkMath::Determinant2x2(a1, a2, b1, b2);

        // Divide by the determinant
        double det = a1*d1 + b1*d2 + c1*d3;

        // Compute inverse only if the matrix is non-singular
        if (det < -VTK_DBL_EPSILON || det > VTK_DBL_EPSILON)
          {
          AI[0][0] = d1/det;
          AI[1][0] = d2/det;
          AI[2][0] = d3/det;

          AI[0][1] = e1/det;
          AI[1][1] = e2/det;
          AI[2][1] = e3/det;

          AI[0][2] = f1/det;
          AI[1][2] = f2/det;
          AI[2][2] = f3/det;
          }

        quality->SetTuple(i, AI[0]);
        break;
        }
      }
    }

  if (pointQuality)
    {
    out->GetPointData()->AddArray(quality);
    }
  else
    {
    out->GetCellData()->AddArray(quality);
    }

  return 1;
}