1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPolyDataNormals.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkPolyDataNormals.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkFloatArray.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkPolygon.h"
#include "vtkTriangleStrip.h"
#include "vtkPriorityQueue.h"
vtkStandardNewMacro(vtkPolyDataNormals);
// Construct with feature angle=30, splitting and consistency turned on,
// flipNormals turned off, and non-manifold traversal turned on.
vtkPolyDataNormals::vtkPolyDataNormals()
{
this->FeatureAngle = 30.0;
this->Splitting = 1;
this->Consistency = 1;
this->FlipNormals = 0;
this->ComputePointNormals = 1;
this->ComputeCellNormals = 0;
this->NonManifoldTraversal = 1;
this->AutoOrientNormals = 0;
// some internal data
this->NumFlips = 0;
}
#define VTK_CELL_NOT_VISITED 0
#define VTK_CELL_VISITED 1
// Generate normals for polygon meshes
int vtkPolyDataNormals::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPolyData *input = vtkPolyData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
int j;
vtkIdType npts = 0;
vtkIdType i;
vtkIdType *pts = 0;
vtkIdType numNewPts;
double polyNormal[3], vertNormal[3], length;
double flipDirection=1.0;
vtkIdType numPolys, numStrips;
vtkIdType cellId;
vtkIdType numPts;
vtkPoints *inPts;
vtkCellArray *inPolys, *inStrips, *polys;
vtkPoints *newPts = NULL;
vtkFloatArray *newNormals;
vtkPointData *pd, *outPD;
vtkCellData *outCD;
double n[3];
vtkCellArray *newPolys;
vtkIdType ptId, oldId;
vtkDebugMacro(<<"Generating surface normals");
numPolys=input->GetNumberOfPolys();
numStrips=input->GetNumberOfStrips();
if ( (numPts=input->GetNumberOfPoints()) < 1 )
{
vtkDebugMacro(<<"No data to generate normals for!");
return 1;
}
// If there is nothing to do, pass the data through
if ( (this->ComputePointNormals == 0 && this->ComputeCellNormals == 0) ||
(numPolys < 1 && numStrips < 1) )
{ //don't do anything! pass data through
output->CopyStructure(input);
output->GetPointData()->PassData(input->GetPointData());
output->GetCellData()->PassData(input->GetCellData());
return 1;
}
output->GetCellData()->PassData(input->GetCellData());
output->SetFieldData(input->GetFieldData());
// Load data into cell structure. We need two copies: one is a
// non-writable mesh used to perform topological queries. The other
// is used to write into and modify the connectivity of the mesh.
//
inPts = input->GetPoints();
inPolys = input->GetPolys();
inStrips = input->GetStrips();
this->OldMesh = vtkPolyData::New();
this->OldMesh->SetPoints(inPts);
if ( numStrips > 0 ) //have to decompose strips into triangles
{
if ( numPolys > 0 )
{
polys = vtkCellArray::New();
polys->DeepCopy(inPolys);
}
else
{
polys = vtkCellArray::New();
polys->Allocate(polys->EstimateSize(numStrips,5));
}
for ( inStrips->InitTraversal(); inStrips->GetNextCell(npts,pts); )
{
vtkTriangleStrip::DecomposeStrip(npts, pts, polys);
}
this->OldMesh->SetPolys(polys);
polys->Delete();
numPolys = polys->GetNumberOfCells();//added some new triangles
}
else
{
this->OldMesh->SetPolys(inPolys);
polys = inPolys;
}
this->OldMesh->BuildLinks();
this->UpdateProgress(0.10);
pd = input->GetPointData();
outPD = output->GetPointData();
outCD = output->GetCellData();
this->NewMesh = vtkPolyData::New();
this->NewMesh->SetPoints(inPts);
// create a copy because we're modifying it
newPolys = vtkCellArray::New();
newPolys->DeepCopy(polys);
this->NewMesh->SetPolys(newPolys);
this->NewMesh->BuildCells(); //builds connectivity
// The visited array keeps track of which polygons have been visited.
//
if ( this->Consistency || this->Splitting || this->AutoOrientNormals )
{
this->Visited = new int[numPolys];
memset(this->Visited, VTK_CELL_NOT_VISITED, numPolys*sizeof(int));
this->CellIds = vtkIdList::New();
this->CellIds->Allocate(VTK_CELL_SIZE);
}
else
{
this->Visited = NULL;
}
// Traverse all polygons insuring proper direction of ordering. This
// works by propagating a wave from a seed polygon to the polygon's
// edge neighbors. Each neighbor may be reordered to maintain consistency
// with its (already checked) neighbors.
//
this->NumFlips = 0;
if (this->AutoOrientNormals)
{
// No need to check this->Consistency. It's implied.
// Ok, here's the basic idea: the "left-most" polygon should
// have its outward pointing normal facing left. If it doesn't,
// reverse the vertex order. Then use it as the seed for other
// connected polys. To find left-most polygon, first find left-most
// point, and examine neighboring polys and see which one
// has a normal that's "most aligned" with the X-axis. This process
// will need to be repeated to handle all connected components in
// the mesh. Report bugs/issues to cvolpe@ara.com.
int foundLeftmostCell;
vtkIdType leftmostCellID=-1, currentPointID, currentCellID;
vtkIdType *leftmostCells;
unsigned short nleftmostCells;
vtkIdType *cellPts;
vtkIdType nCellPts;
int cIdx;
double bestNormalAbsXComponent;
int bestReverseFlag;
vtkPriorityQueue *leftmostPoints = vtkPriorityQueue::New();
this->Wave = vtkIdList::New();
this->Wave->Allocate(numPolys/4+1,numPolys);
this->Wave2 = vtkIdList::New();
this->Wave2->Allocate(numPolys/4+1,numPolys);
// Put all the points in the priority queue, based on x coord
// So that we can find leftmost point
leftmostPoints->Allocate(numPts);
for (ptId=0; ptId < numPts; ptId++)
{
leftmostPoints->Insert(inPts->GetPoint(ptId)[0],ptId);
}
// Repeat this while loop as long as the queue is not empty,
// because there may be multiple connected components, each of
// which needs to be seeded independently with a correctly
// oriented polygon.
while (leftmostPoints->GetNumberOfItems())
{
foundLeftmostCell = 0;
// Keep iterating through leftmost points and cells located at
// those points until I've got a leftmost point with
// unvisited cells attached and I've found the best cell
// at that point
do {
currentPointID = leftmostPoints->Pop();
this->OldMesh->GetPointCells(currentPointID, nleftmostCells, leftmostCells);
bestNormalAbsXComponent = 0.0;
bestReverseFlag = 0;
for (cIdx = 0; cIdx < nleftmostCells; cIdx++)
{
currentCellID = leftmostCells[cIdx];
if (this->Visited[currentCellID] == VTK_CELL_VISITED)
{
continue;
}
this->OldMesh->GetCellPoints(currentCellID, nCellPts, cellPts);
vtkPolygon::ComputeNormal(inPts, nCellPts, cellPts, n);
// Ok, see if this leftmost cell candidate is the best
// so far
if (fabs(n[0]) > bestNormalAbsXComponent)
{
bestNormalAbsXComponent = fabs(n[0]);
leftmostCellID = currentCellID;
// If the current leftmost cell's normal is pointing to the
// right, then the vertex ordering is wrong
bestReverseFlag = (n[0] > 0);
foundLeftmostCell = 1;
} // if this normal is most x-aligned so far
} // for each cell at current leftmost point
} while (leftmostPoints->GetNumberOfItems() && !foundLeftmostCell);
if (foundLeftmostCell)
{
// We've got the seed for a connected component! But do
// we need to flip it first? We do, if it was pointed the wrong
// way to begin with, or if the user requested flipping all
// normals, but if both are true, then we leave it as it is.
if (bestReverseFlag ^ this->FlipNormals)
{
this->NewMesh->ReverseCell(leftmostCellID);
this->NumFlips++;
}
this->Wave->InsertNextId(leftmostCellID);
this->Visited[leftmostCellID] = VTK_CELL_VISITED;
this->TraverseAndOrder();
this->Wave->Reset();
this->Wave2->Reset();
} // if found leftmost cell
} // Still some points in the queue
this->Wave->Delete();
this->Wave2->Delete();
leftmostPoints->Delete();
vtkDebugMacro(<<"Reversed ordering of " << this->NumFlips << " polygons");
} // automatically orient normals
else
{
if ( this->Consistency )
{
this->Wave = vtkIdList::New();
this->Wave->Allocate(numPolys/4+1,numPolys);
this->Wave2 = vtkIdList::New();
this->Wave2->Allocate(numPolys/4+1,numPolys);
for (cellId=0; cellId < numPolys; cellId++)
{
if ( this->Visited[cellId] == VTK_CELL_NOT_VISITED)
{
if ( this->FlipNormals )
{
this->NumFlips++;
this->NewMesh->ReverseCell(cellId);
}
this->Wave->InsertNextId(cellId);
this->Visited[cellId] = VTK_CELL_VISITED;
this->TraverseAndOrder();
}
this->Wave->Reset();
this->Wave2->Reset();
}
this->Wave->Delete();
this->Wave2->Delete();
vtkDebugMacro(<<"Reversed ordering of " << this->NumFlips << " polygons");
}//Consistent ordering
} // don't automatically orient normals
this->UpdateProgress(0.333);
// Initial pass to compute polygon normals without effects of neighbors
//
this->PolyNormals = vtkFloatArray::New();
this->PolyNormals->SetNumberOfComponents(3);
this->PolyNormals->Allocate(3*numPolys);
this->PolyNormals->SetName("Normals");
this->PolyNormals->SetNumberOfTuples(numPolys);
for (cellId=0, newPolys->InitTraversal(); newPolys->GetNextCell(npts,pts);
cellId++ )
{
if ((cellId % 1000) == 0)
{
this->UpdateProgress (0.333 + 0.333 * (double) cellId / (double) numPolys);
if (this->GetAbortExecute())
{
break;
}
}
vtkPolygon::ComputeNormal(inPts, npts, pts, n);
this->PolyNormals->SetTuple(cellId,n);
}
// Split mesh if sharp features
if ( this->Splitting )
{
// Traverse all nodes; evaluate loops and feature edges. If feature
// edges found, split mesh creating new nodes. Update polygon
// connectivity.
//
this->CosAngle = cos( vtkMath::RadiansFromDegrees( this->FeatureAngle) );
// Splitting will create new points. We have to create index array
// to map new points into old points.
//
this->Map = vtkIdList::New();
this->Map->SetNumberOfIds(numPts);
for (i=0; i < numPts; i++)
{
this->Map->SetId(i,i);
}
for (ptId=0; ptId < numPts; ptId++)
{
this->MarkAndSplit(ptId);
}//for all input points
numNewPts = this->Map->GetNumberOfIds();
vtkDebugMacro(<<"Created " << numNewPts-numPts << " new points");
// Now need to map attributes of old points into new points.
//
outPD->CopyNormalsOff();
outPD->CopyAllocate(pd,numNewPts);
newPts = vtkPoints::New(); newPts->SetNumberOfPoints(numNewPts);
for (ptId=0; ptId < numNewPts; ptId++)
{
oldId = this->Map->GetId(ptId);
newPts->SetPoint(ptId,inPts->GetPoint(oldId));
outPD->CopyData(pd,oldId,ptId);
}
this->Map->Delete();
} //splitting
else //no splitting, so no new points
{
numNewPts = numPts;
outPD->CopyNormalsOff();
outPD->PassData(pd);
}
if ( this->Consistency || this->Splitting )
{
delete [] this->Visited;
this->CellIds->Delete();
}
this->UpdateProgress(0.80);
// Finally, traverse all elements, computing polygon normals and
// accumulating them at the vertices.
//
if ( this->FlipNormals && ! this->Consistency )
{
flipDirection = -1.0;
}
newNormals = vtkFloatArray::New();
newNormals->SetNumberOfComponents(3);
newNormals->SetNumberOfTuples(numNewPts);
newNormals->SetName("Normals");
n[0] = n[1] = n[2] = 0.0;
for (i=0; i < numNewPts; i++)
{
newNormals->SetTuple(i,n);
}
if (this->ComputePointNormals)
{
for (cellId=0, newPolys->InitTraversal(); newPolys->GetNextCell(npts,pts);
cellId++ )
{
this->PolyNormals->GetTuple(cellId, polyNormal);
for (i=0; i < npts; i++)
{
newNormals->GetTuple(pts[i], vertNormal);
for (j=0; j < 3; j++)
{
n[j] = vertNormal[j] + polyNormal[j];
}
newNormals->SetTuple(pts[i],n);
}
}
for (i=0; i < numNewPts; i++)
{
newNormals->GetTuple(i, vertNormal);
length = vtkMath::Norm(vertNormal);
if (length != 0.0)
{
for (j=0; j < 3; j++)
{
n[j] = vertNormal[j] / length * flipDirection;
}
}
newNormals->SetTuple(i,n);
}
}
// Update ourselves. If no new nodes have been created (i.e., no
// splitting), we can simply pass data through.
//
if ( ! this->Splitting )
{
output->SetPoints(inPts);
}
// If there is splitting, then have to send down the new data.
//
else
{
output->SetPoints(newPts);
newPts->Delete();
}
if (this->ComputeCellNormals)
{
outCD->SetNormals(this->PolyNormals);
}
this->PolyNormals->Delete();
if (this->ComputePointNormals)
{
outPD->SetNormals(newNormals);
}
newNormals->Delete();
output->SetPolys(newPolys);
newPolys->Delete();
// copy the original vertices and lines to the output
output->SetVerts(input->GetVerts());
output->SetLines(input->GetLines());
this->OldMesh->Delete();
this->NewMesh->Delete();
return 1;
}
// Propagate wave of consistently ordered polygons.
//
void vtkPolyDataNormals::TraverseAndOrder (void)
{
vtkIdType p1, p2, i, k;
int j, l;
vtkIdType numIds, cellId;
vtkIdType *pts, *neiPts, npts, numNeiPts;
vtkIdType neighbor;
vtkIdList *tmpWave;
// propagate wave until nothing left in wave
while ( (numIds=this->Wave->GetNumberOfIds()) > 0 )
{
for ( i=0; i < numIds; i++ )
{
cellId = this->Wave->GetId(i);
this->NewMesh->GetCellPoints(cellId, npts, pts);
for (j=0; j < npts; j++) //for each edge neighbor
{
p1 = pts[j];
p2 = pts[(j+1)%npts];
this->OldMesh->GetCellEdgeNeighbors(cellId, p1, p2, this->CellIds);
// Check the direction of the neighbor ordering. Should be
// consistent with us (i.e., if we are n1->n2,
// neighbor should be n2->n1).
if ( this->CellIds->GetNumberOfIds() == 1 ||
this->NonManifoldTraversal )
{
for (k=0; k < this->CellIds->GetNumberOfIds(); k++)
{
if (this->Visited[this->CellIds->GetId(k)]==VTK_CELL_NOT_VISITED)
{
neighbor = this->CellIds->GetId(k);
this->NewMesh->GetCellPoints(neighbor,numNeiPts,neiPts);
for (l=0; l < numNeiPts; l++)
{
if (neiPts[l] == p2)
{
break;
}
}
// Have to reverse ordering if neighbor not consistent
//
if ( neiPts[(l+1)%numNeiPts] != p1 )
{
this->NumFlips++;
this->NewMesh->ReverseCell(neighbor);
}
this->Visited[neighbor] = VTK_CELL_VISITED;
this->Wave2->InsertNextId(neighbor);
}// if cell not visited
} // for each edge neighbor
} //for manifold or non-manifold traversal allowed
} // for all edges of this polygon
} //for all cells in wave
//swap wave and proceed with propagation
tmpWave = this->Wave;
this->Wave = this->Wave2;
this->Wave2 = tmpWave;
this->Wave2->Reset();
} //while wave still propagating
return;
}
//
// Mark polygons around vertex. Create new vertex (if necessary) and
// replace (i.e., split mesh).
//
void vtkPolyDataNormals::MarkAndSplit (vtkIdType ptId)
{
int i,j;
// Get the cells using this point and make sure that we have to do something
unsigned short ncells;
vtkIdType *cells;
this->OldMesh->GetPointCells(ptId,ncells,cells);
if ( ncells <= 1 )
{
return; //point does not need to be further disconnected
}
// Start moving around the "cycle" of points using the point. Label
// each point as requiring a visit. Then label each subregion of cells
// connected to this point that are connected (and not separated by
// a feature edge) with a given region number. For each N regions
// created, N-1 duplicate (split) points are created. The split point
// replaces the current point ptId in the polygons connectivity array.
//
// Start by initializing the cells as unvisited
for (i=0; i<ncells; i++)
{
this->Visited[cells[i]] = -1;
}
// Loop over all cells and mark the region that each is in.
//
vtkIdType numPts;
vtkIdType *pts;
int numRegions = 0;
vtkIdType spot, neiPt[2], nei, cellId, neiCellId;
double thisNormal[3], neiNormal[3];
for (j=0; j<ncells; j++) //for all cells connected to point
{
if ( this->Visited[cells[j]] < 0 ) //for all unvisited cells
{
this->Visited[cells[j]] = numRegions;
//okay, mark all the cells connected to this seed cell and using ptId
this->OldMesh->GetCellPoints(cells[j],numPts,pts);
//find the two edges
for (spot=0; spot < numPts; spot++)
{
if ( pts[spot] == ptId )
{
break;
}
}
if ( spot == 0 )
{
neiPt[0] = pts[spot+1];
neiPt[1] = pts[numPts-1];
}
else if ( spot == (numPts-1) )
{
neiPt[0] = pts[spot-1];
neiPt[1] = pts[0];
}
else
{
neiPt[0] = pts[spot+1];
neiPt[1] = pts[spot-1];
}
for (i=0; i<2; i++) //for each of the two edges of the seed cell
{
cellId = cells[j];
nei = neiPt[i];
while ( cellId >= 0 ) //while we can grow this region
{
this->OldMesh->GetCellEdgeNeighbors(cellId,ptId,nei,this->CellIds);
if ( this->CellIds->GetNumberOfIds() == 1 &&
this->Visited[(neiCellId=this->CellIds->GetId(0))] < 0 )
{
this->PolyNormals->GetTuple(cellId, thisNormal);
this->PolyNormals->GetTuple(neiCellId, neiNormal);
if ( vtkMath::Dot(thisNormal,neiNormal) > CosAngle )
{
//visit and arrange to visit next edge neighbor
this->Visited[neiCellId] = numRegions;
cellId = neiCellId;
this->OldMesh->GetCellPoints(cellId,numPts,pts);
for (spot=0; spot < numPts; spot++)
{
if ( pts[spot] == ptId )
{
break;
}
}
if (spot == 0)
{
nei = (pts[spot+1] != nei ? pts[spot+1] : pts[numPts-1]);
}
else if (spot == (numPts-1))
{
nei = (pts[spot-1] != nei ? pts[spot-1] : pts[0]);
}
else
{
nei = (pts[spot+1] != nei ? pts[spot+1] : pts[spot-1]);
}
}//if not separated by edge angle
else
{
cellId = -1; //separated by edge angle
}
}//if can move to edge neighbor
else
{
cellId = -1;//separated by previous visit, boundary, or non-manifold
}
}//while visit wave is propagating
}//for each of the two edges of the starting cell
numRegions++;
}//if cell is unvisited
}//for all cells connected to point ptId
if ( numRegions <=1 )
{
return; //a single region, no splitting ever required
}
// Okay, for all cells not in the first region, the ptId is
// replaced with a new ptId, which is a duplicate of the first
// point, but disconnected topologically.
//
vtkIdType lastId = this->Map->GetNumberOfIds();
vtkIdType replacementPoint;
for (j=0; j<ncells; j++)
{
if (this->Visited[cells[j]] > 0 ) //replace point if splitting needed
{
replacementPoint = lastId + this->Visited[cells[j]] - 1;
this->Map->InsertId(replacementPoint, ptId);
this->NewMesh->GetCellPoints(cells[j],numPts,pts);
for (i=0; i < numPts; i++)
{
if ( pts[i] == ptId )
{
pts[i] = replacementPoint; // this is very nasty! direct write!
break;
}
}//replace ptId with split point
}//if not in first regions and requiring splitting
}//for all cells connected to ptId
return;
}
void vtkPolyDataNormals::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Feature Angle: " << this->FeatureAngle << "\n";
os << indent << "Splitting: " << (this->Splitting ? "On\n" : "Off\n");
os << indent << "Consistency: " << (this->Consistency ? "On\n" : "Off\n");
os << indent << "Flip Normals: " << (this->FlipNormals ? "On\n" : "Off\n");
os << indent << "Auto Orient Normals: " << (this->AutoOrientNormals ? "On\n" : "Off\n");
os << indent << "Num Flips: " << this->NumFlips << endl;
os << indent << "Compute Point Normals: "
<< (this->ComputePointNormals ? "On\n" : "Off\n");
os << indent << "Compute Cell Normals: "
<< (this->ComputeCellNormals ? "On\n" : "Off\n");
os << indent << "Non-manifold Traversal: "
<< (this->NonManifoldTraversal ? "On\n" : "Off\n");
}
|