1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkReverseSense.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkReverseSense.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkDataArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
vtkStandardNewMacro(vtkReverseSense);
// Construct object so that behavior is to reverse cell ordering and
// leave normal orientation as is.
vtkReverseSense::vtkReverseSense()
{
this->ReverseCells = 1;
this->ReverseNormals = 0;
}
int vtkReverseSense::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPolyData *input = vtkPolyData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkDataArray *normals=input->GetPointData()->GetNormals();
vtkDataArray *cellNormals=input->GetCellData()->GetNormals();
vtkDebugMacro(<<"Reversing sense of poly data");
output->CopyStructure(input);
output->GetPointData()->PassData(input->GetPointData());
output->GetCellData()->PassData(input->GetCellData());
//If specified, traverse all cells and reverse them
int abort=0;
vtkIdType progressInterval;
if ( this->ReverseCells )
{
vtkIdType numCells=input->GetNumberOfCells();
vtkCellArray *verts, *lines, *polys, *strips;
//Instantiate necessary topology arrays
verts = vtkCellArray::New();
verts->DeepCopy(input->GetVerts());
lines = vtkCellArray::New();
lines->DeepCopy(input->GetLines());
polys = vtkCellArray::New();
polys->DeepCopy(input->GetPolys());
strips = vtkCellArray::New();
strips->DeepCopy(input->GetStrips());
output->SetVerts(verts); verts->Delete();
output->SetLines(lines); lines->Delete();
output->SetPolys(polys); polys->Delete();
output->SetStrips(strips); strips->Delete();
progressInterval=numCells/10+1;
for (vtkIdType cellId=0; cellId < numCells && !abort; cellId++ )
{
if ( ! (cellId % progressInterval) ) //manage progress / early abort
{
this->UpdateProgress (0.6*cellId/numCells);
abort = this->GetAbortExecute();
}
output->ReverseCell(cellId);
}
}
//If specified and normals available, reverse orientation of normals.
// Using NewInstance() creates normals of the same data type.
if ( this->ReverseNormals && normals )
{
//first do point normals
vtkIdType numPoints=input->GetNumberOfPoints();
vtkDataArray *outNormals=normals->NewInstance();
outNormals->SetNumberOfComponents(normals->GetNumberOfComponents());
outNormals->SetNumberOfTuples(numPoints);
double n[3];
progressInterval=numPoints/5+1;
for ( int ptId=0; ptId < numPoints; ptId++ )
{
if ( ! (ptId % progressInterval) ) //manage progress / early abort
{
this->UpdateProgress (0.6 + 0.2*ptId/numPoints);
abort = this->GetAbortExecute();
}
normals->GetTuple(ptId,n);
n[0] = -n[0]; n[1] = -n[1]; n[2] = -n[2];
outNormals->SetTuple(ptId,n);
}
output->GetPointData()->SetNormals(outNormals);
outNormals->Delete();
}
//now do cell normals
if ( this->ReverseNormals && cellNormals )
{
vtkIdType numCells=input->GetNumberOfCells();
vtkDataArray *outNormals=cellNormals->NewInstance();
outNormals->SetNumberOfComponents(cellNormals->GetNumberOfComponents());
outNormals->SetNumberOfTuples(numCells);
double n[3];
progressInterval=numCells/5+1;
for (vtkIdType cellId=0; cellId < numCells && !abort; cellId++ )
{
if ( ! (cellId % progressInterval) ) //manage progress / early abort
{
this->UpdateProgress (0.8 + 0.2*cellId/numCells);
abort = this->GetAbortExecute();
}
cellNormals->GetTuple(cellId,n);
n[0] = -n[0]; n[1] = -n[1]; n[2] = -n[2];
outNormals->SetTuple(cellId,n);
}
output->GetCellData()->SetNormals(outNormals);
outNormals->Delete();
}
return 1;
}
void vtkReverseSense::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Reverse Cells: "
<< (this->ReverseCells ? "On\n" : "Off\n");
os << indent << "Reverse Normals: "
<< (this->ReverseNormals ? "On\n" : "Off\n");
}
|