1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/* ----------------------------------------------------------------------
MR-MPI = MapReduce-MPI library
http://www.cs.sandia.gov/~sjplimp/mapreduce.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2009) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the modified Berkeley Software Distribution (BSD) License.
See the README file in the top-level MapReduce directory.
------------------------------------------------------------------------- */
// MapReduce random RMAT matrix generation example in C++
// Syntax: rmat N Nz a b c d frac seed {outfile}
// 2^N = # of rows in RMAT matrix
// Nz = non-zeroes per row
// a,b,c,d = RMAT params (must sum to 1.0)
// frac = RMAT randomization param (frac < 1, 0 = no randomization)
// seed = RNG seed (positive int)
// outfile = output RMAT matrix to this filename (optional)
#include "mpi.h"
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "mapreduce.h"
#include "keyvalue.h"
using namespace MAPREDUCE_NS;
void generate(int, KeyValue *, void *);
void cull(char *, int, char *, int, int *, KeyValue *, void *);
void output(char *, int, char *, int, int *, KeyValue *, void *);
void nonzero(char *, int, char *, int, int *, KeyValue *, void *);
void degree(char *, int, char *, int, int *, KeyValue *, void *);
void histo(char *, int, char *, int, int *, KeyValue *, void *);
int ncompare(char *, int, char *, int);
void stats(int, char *, int, char *, int, KeyValue *, void *);
struct RMAT { // RMAT params
int nlevels,order;
int nnonzero;
int ngenerate;
double a,b,c,d,fraction;
char *outfile;
FILE *fp;
};
typedef int VERTEX; // vertex ID
typedef struct { // edge = 2 vertices
VERTEX vi,vj;
} EDGE;
/* ---------------------------------------------------------------------- */
int main(int narg, char **args)
{
MPI_Init(&narg,&args);
int me,nprocs;
MPI_Comm_rank(MPI_COMM_WORLD,&me);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
// parse command-line args
if (narg != 9 && narg != 10) {
if (me == 0) printf("Syntax: rmat N Nz a b c d frac seed {outfile}\n");
MPI_Abort(MPI_COMM_WORLD,1);
}
RMAT rmat;
rmat.nlevels = atoi(args[1]);
rmat.nnonzero = atoi(args[2]);
rmat.a = atof(args[3]);
rmat.b = atof(args[4]);
rmat.c = atof(args[5]);
rmat.d = atof(args[6]);
rmat.fraction = atof(args[7]);
int seed = atoi(args[8]);
if (narg == 10) {
int n = strlen(args[9]) + 1;
rmat.outfile = new char[n];
strcpy(rmat.outfile,args[9]);
} else rmat.outfile = NULL;
if (rmat.a + rmat.b + rmat.c + rmat.d != 1.0) {
if (me == 0) printf("ERROR: a,b,c,d must sum to 1\n");
MPI_Abort(MPI_COMM_WORLD,1);
}
if (rmat.fraction >= 1.0) {
if (me == 0) printf("ERROR: fraction must be < 1\n");
MPI_Abort(MPI_COMM_WORLD,1);
}
srand48(seed+me);
rmat.order = 1 << rmat.nlevels;
MapReduce *mr = new MapReduce(MPI_COMM_WORLD);
// loop until desired number of unique nonzero entries
MPI_Barrier(MPI_COMM_WORLD);
double tstart = MPI_Wtime();
int niterate = 0;
int ntotal = (1 << rmat.nlevels) * rmat.nnonzero;
int nremain = ntotal;
while (nremain) {
niterate++;
rmat.ngenerate = nremain/nprocs;
if (me < nremain % nprocs) rmat.ngenerate++;
mr->map(nprocs,&generate,&rmat,1);
int nunique = mr->collate(NULL);
if (nunique == ntotal) break;
mr->reduce(&cull,&rmat);
nremain = ntotal - nunique;
}
MPI_Barrier(MPI_COMM_WORLD);
double tstop = MPI_Wtime();
// output matrix if requested
if (rmat.outfile) {
char fname[128];
sprintf(fname,"%s.%d",rmat.outfile,me);
rmat.fp = fopen(fname,"w");
if (rmat.fp == NULL) {
printf("ERROR: Could not open output file");
MPI_Abort(MPI_COMM_WORLD,1);
}
MapReduce *mr2 = new MapReduce(*mr);
mr2->reduce(&output,&rmat);
fclose(rmat.fp);
delete mr2;
}
// stats to screen
// include stats on number of nonzeroes per row
if (me == 0) {
printf("%d rows in matrix\n",rmat.order);
printf("%d nonzeroes in matrix\n",ntotal);
}
mr->reduce(&nonzero,NULL);
mr->collate(NULL);
mr->reduce(°ree,NULL);
mr->collate(NULL);
mr->reduce(&histo,NULL);
mr->gather(1);
mr->sort_keys(&ncompare);
int total = 0;
mr->map(mr->kv,&stats,&total);
if (me == 0) printf("%d rows with 0 nonzeroes\n",rmat.order-total);
if (me == 0)
printf("%g secs to generate matrix on %d procs in %d iterations\n",
tstop-tstart,nprocs,niterate);
// clean up
delete mr;
delete [] rmat.outfile;
MPI_Finalize();
}
/* ----------------------------------------------------------------------
generate RMAT matrix entries
emit one KV per edge: key = edge, value = NULL
------------------------------------------------------------------------- */
void generate(int itask, KeyValue *kv, void *ptr)
{
RMAT *rmat = (RMAT *) ptr;
int nlevels = rmat->nlevels;
int order = rmat->order;
int ngenerate = rmat->ngenerate;
double a = rmat->a;
double b = rmat->b;
double c = rmat->c;
double d = rmat->d;
double fraction = rmat->fraction;
int i,j,ilevel,delta;
double a1,b1,c1,d1,total,rn;
EDGE edge;
for (int m = 0; m < ngenerate; m++) {
delta = order >> 1;
a1 = a; b1 = b; c1 = c; d1 = d;
i = j = 0;
for (ilevel = 0; ilevel < nlevels; ilevel++) {
rn = drand48();
if (rn < a1) {
} else if (rn < a1+b1) {
j += delta;
} else if (rn < a1+b1+c1) {
i += delta;
} else {
i += delta;
j += delta;
}
delta /= 2;
if (fraction > 0.0) {
a1 += a1*fraction * (drand48() - 0.5);
b1 += b1*fraction * (drand48() - 0.5);
c1 += c1*fraction * (drand48() - 0.5);
d1 += d1*fraction * (drand48() - 0.5);
total = a1+b1+c1+d1;
a1 /= total;
b1 /= total;
c1 /= total;
d1 /= total;
}
}
edge.vi = i;
edge.vj = j;
kv->add((char *) &edge,sizeof(EDGE),NULL,0);
}
}
/* ----------------------------------------------------------------------
eliminate duplicate edges
input: one KMV per edge, MV has multiple entries if duplicates exist
output: one KV per edge: key = edge, value = NULL
------------------------------------------------------------------------- */
void cull(char *key, int keybytes, char *multivalue,
int nvalues, int *valuebytes, KeyValue *kv, void *ptr)
{
kv->add(key,keybytes,NULL,0);
}
/* ----------------------------------------------------------------------
write edges to a file unique to this processor
------------------------------------------------------------------------- */
void output(char *key, int keybytes, char *multivalue,
int nvalues, int *valuebytes, KeyValue *kv, void *ptr)
{
RMAT *rmat = (RMAT *) ptr;
EDGE *edge = (EDGE *) key;
fprintf(rmat->fp,"%d %d 1\n",edge->vi+1,edge->vj+1);
}
/* ----------------------------------------------------------------------
enumerate nonzeroes in each row
input: one KMV per edge
output: one KV per edge: key = row I, value = NULL
------------------------------------------------------------------------- */
void nonzero(char *key, int keybytes, char *multivalue,
int nvalues, int *valuebytes, KeyValue *kv, void *ptr)
{
EDGE *edge = (EDGE *) key;
kv->add((char *) &edge->vi,sizeof(VERTEX),NULL,0);
}
/* ----------------------------------------------------------------------
count nonzeroes in each row
input: one KMV per row, MV has entry for each nonzero
output: one KV: key = # of nonzeroes, value = NULL
------------------------------------------------------------------------- */
void degree(char *key, int keybytes, char *multivalue,
int nvalues, int *valuebytes, KeyValue *kv, void *ptr)
{
kv->add((char *) &nvalues,sizeof(int),NULL,0);
}
/* ----------------------------------------------------------------------
count rows with same # of nonzeroes
input: one KMV per nonzero count, MV has entry for each row
output: one KV: key = # of nonzeroes, value = # of rows
------------------------------------------------------------------------- */
void histo(char *key, int keybytes, char *multivalue,
int nvalues, int *valuebytes, KeyValue *kv, void *ptr)
{
kv->add(key,keybytes,(char *) &nvalues,sizeof(int));
}
/* ----------------------------------------------------------------------
compare two counts
order values by count, largest first
------------------------------------------------------------------------- */
int ncompare(char *p1, int len1, char *p2, int len2)
{
int i1 = *(int *) p1;
int i2 = *(int *) p2;
if (i1 > i2) return -1;
else if (i1 < i2) return 1;
else return 0;
}
/* ----------------------------------------------------------------------
print # of rows with a specific # of nonzeroes
------------------------------------------------------------------------- */
void stats(int itask, char *key, int keybytes, char *value,
int valuebytes, KeyValue *kv, void *ptr)
{
int *total = (int *) ptr;
int nnz = *(int *) key;
int ncount = *(int *) value;
*total += ncount;
printf("%d rows with %d nonzeroes\n",ncount,nnz);
}
|