1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#!/usr/local/bin/python
# ----------------------------------------------------------------------
# MR-MPI = MapReduce-MPI library
# http://www.cs.sandia.gov/~sjplimp/mapreduce.html
# Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
#
# Copyright (2009) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software. This software is distributed under
# the modified Berkeley Software Distribution (BSD) License.
#
# See the README file in the top-level MapReduce directory.
# -------------------------------------------------------------------------
# MapReduce random RMAT matrix generation example in C++
# Syntax: rmat.py N Nz a b c d frac seed {outfile}
# 2^N = # of rows in RMAT matrix
# Nz = non-zeroes per row
# a,b,c,d = RMAT params (must sum to 1.0)
# frac = RMAT randomization param (frac < 1, 0 = no randomization)
# seed = RNG seed (positive int)
# outfile = output RMAT matrix to this filename (optional)
import sys, random
from mrmpi import mrmpi
try:
import pypar
except:
import pypar_serial as pypar
# generate RMAT matrix entries
# emit one KV per edge: key = edge, value = NULL
def generate(itask,mr):
for m in xrange(ngenerate):
delta = order / 2
a1 = a; b1 = b; c1 = c; d1 = d
i = j = 0
for ilevel in xrange(nlevels):
rn = random.random()
if rn < a1:
pass
elif rn < a1+b1:
j += delta
elif rn < a1+b1+c1:
i += delta
else:
i += delta
j += delta
delta /= 2
if fraction > 0.0:
a1 += a1*fraction * (drand48() - 0.5)
b1 += b1*fraction * (drand48() - 0.5)
c1 += c1*fraction * (drand48() - 0.5)
d1 += d1*fraction * (drand48() - 0.5)
total = a1+b1+c1+d1
a1 /= total
b1 /= total
c1 /= total
d1 /= total
mr.add((i,j),None)
# eliminate duplicate edges
# input: one KMV per edge, MV has multiple entries if duplicates exist
# output: one KV per edge: key = edge, value = NULL
def cull(key,mvalue,mr):
mr.add(key,None)
# write edges to a file unique to this processor
def output(key,mvalue,mr):
print >>fp,key[0]+1,key[1]+1,1
# enumerate nonzeroes in each row
# input: one KMV per edge
# output: one KV per edge: key = row I, value = NULL
def nonzero(key,mvalue,mr):
mr.add(key[0],None)
# count nonzeroes in each row
# input: one KMV per row, MV has entry for each nonzero
# output: one KV: key = # of nonzeroes, value = NULL
def degree(key,mvalue,mr):
mr.add(len(mvalue),None);
# count rows with same # of nonzeroes
# input: one KMV per nonzero count, MV has entry for each row
# output: one KV: key = # of nonzeroes, value = # of rows
def histo(key,mvalue,mr):
mr.add(key,len(mvalue))
# compare two counts
# order values by count, largest first
def ncompare(one,two):
if one > two: return -1;
elif one < two: return 1;
else: return 0;
# print # of rows with a specific # of nonzeroes
def stats(itask,key,value,mr):
global total
total += value;
print "%d rows with %d nonzeroes" % (value,key)
# main program
nprocs = pypar.size()
me = pypar.rank()
if len(sys.argv) != 9 and len(sys.argv) != 10:
if me == 0: print "Syntax: N Nz a b c d frac seed {outfile}"
sys.exit()
nlevels = int(sys.argv[1])
nnonzero = int(sys.argv[2])
a = float(sys.argv[3])
b = float(sys.argv[4])
c = float(sys.argv[5])
d = float(sys.argv[6])
fraction = float(sys.argv[7])
seed = int(sys.argv[8])
if len(sys.argv) == 10: outfile = sys.argv[9]
else: outfile = None
if a+b+c+d != 1.0:
if me == 0: print "ERROR: a,b,c,d must sum to 1"
sys.exit()
if fraction >= 1.0:
if me == 0: print "ERROR: fraction must be < 1"
sys.exit()
random.seed(seed+me)
order = 1 << nlevels
mr = mrmpi()
# loop until desired number of unique nonzero entries
pypar.barrier()
tstart = pypar.time()
niterate = 0
ntotal = (1 << nlevels) * nnonzero
nremain = ntotal
while nremain:
niterate += 1
ngenerate = nremain/nprocs
if me < nremain % nprocs: ngenerate += 1
mr.map(nprocs,generate,None,1)
nunique = mr.collate()
if nunique == ntotal: break
mr.reduce(cull)
nremain = ntotal - nunique
pypar.barrier()
tstop = pypar.time()
# output matrix if requested
if outfile:
fp = open(outfile + "." + str(me),"w")
if not fp:
print "ERROR: Could not open output file"
sys.exit()
mr2 = mr.copy()
mr2.reduce(output)
fp.close()
mr2.destroy()
# stats to screen
# include stats on number of nonzeroes per row
if me == 0:
print order,"rows in matrix"
print ntotal,"nonzeroes in matrix"
mr.reduce(nonzero)
mr.collate()
mr.reduce(degree)
mr.collate()
mr.reduce(histo)
mr.gather(1)
mr.sort_keys(ncompare)
total = 0
mr.map_kv(mr,stats)
if me == 0: print order-total,"rows with 0 nonzeroes"
if me == 0:
print "%g secs to generate matrix on %d procs in %d iterations" % \
(tstop-tstart,nprocs,niterate)
mr.destroy()
pypar.finalize()
|