1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/*************************************************************************
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
Contributors:
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
pseudocode.
See subroutines comments for additional copyrights.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.
- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include "alglib/qr.h"
/*************************************************************************
QR decomposition of a rectangular matrix of size MxN
Input parameters:
A - matrix A whose indexes range within [0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q and R in compact form (see below).
Tau - array of scalar factors which are used to form
matrix Q. Array whose index ranges within [0.. Min(M-1,N-1)].
Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size M x N.
The elements of matrix R are located on and above the main diagonal of
matrix A. The elements which are located in Tau array and below the main
diagonal of matrix A are used to form matrix Q as follows:
Matrix Q is represented as a product of elementary reflections
Q = H(0)*H(2)*...*H(k-1),
where k = min(m,n), and each H(i) is in the form
H(i) = 1 - tau * v * (v^T)
where tau is a scalar stored in Tau[I]; v - real vector,
so that v(0:i-1) = 0, v(i) = 1, v(i+1:m-1) stored in A(i+1:m-1,i).
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992.
Translation from FORTRAN to pseudocode (AlgoPascal)
by Sergey Bochkanov, ALGLIB project, 2005-2007.
*************************************************************************/
void rmatrixqr(ap::real_2d_array& a, int m, int n, ap::real_1d_array& tau)
{
ap::real_1d_array work;
ap::real_1d_array t;
int i;
int k;
int minmn;
double tmp;
if( m<=0||n<=0 )
{
return;
}
minmn = ap::minint(m, n);
work.setbounds(0, n-1);
t.setbounds(1, m);
tau.setbounds(0, minmn-1);
//
// Test the input arguments
//
k = minmn;
for(i = 0; i <= k-1; i++)
{
//
// Generate elementary reflector H(i) to annihilate A(i+1:m,i)
//
ap::vmove(t.getvector(1, m-i), a.getcolumn(i, i, m-1));
generatereflection(t, m-i, tmp);
tau(i) = tmp;
ap::vmove(a.getcolumn(i, i, m-1), t.getvector(1, m-i));
t(1) = 1;
if( i<n )
{
//
// Apply H(i) to A(i:m-1,i+1:n-1) from the left
//
applyreflectionfromtheleft(a, tau(i), t, i, m-1, i+1, n-1, work);
}
}
}
/*************************************************************************
Partial unpacking of matrix Q from the QR decomposition of a matrix A
Input parameters:
A - matrices Q and R in compact form.
Output of RMatrixQR subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Tau - scalar factors which are used to form Q.
Output of the RMatrixQR subroutine.
QColumns - required number of columns of matrix Q. M>=QColumns>=0.
Output parameters:
Q - first QColumns columns of matrix Q.
Array whose indexes range within [0..M-1, 0..QColumns-1].
If QColumns=0, the array remains unchanged.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackq(const ap::real_2d_array& a,
int m,
int n,
const ap::real_1d_array& tau,
int qcolumns,
ap::real_2d_array& q)
{
int i;
int j;
int k;
int minmn;
ap::real_1d_array v;
ap::real_1d_array work;
ap::ap_error::make_assertion(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
if( m<=0||n<=0||qcolumns<=0 )
{
return;
}
//
// init
//
minmn = ap::minint(m, n);
k = ap::minint(minmn, qcolumns);
q.setbounds(0, m-1, 0, qcolumns-1);
v.setbounds(1, m);
work.setbounds(0, qcolumns-1);
for(i = 0; i <= m-1; i++)
{
for(j = 0; j <= qcolumns-1; j++)
{
if( i==j )
{
q(i,j) = 1;
}
else
{
q(i,j) = 0;
}
}
}
//
// unpack Q
//
for(i = k-1; i >= 0; i--)
{
//
// Apply H(i)
//
ap::vmove(v.getvector(1, m-i), a.getcolumn(i, i, m-1));
v(1) = 1;
applyreflectionfromtheleft(q, tau(i), v, i, m-1, 0, qcolumns-1, work);
}
}
/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A
Input parameters:
A - matrices Q and R in compact form.
Output of RMatrixQR subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Output parameters:
R - matrix R, array[0..M-1, 0..N-1].
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackr(const ap::real_2d_array& a,
int m,
int n,
ap::real_2d_array& r)
{
int i;
int k;
if( m<=0||n<=0 )
{
return;
}
k = ap::minint(m, n);
r.setbounds(0, m-1, 0, n-1);
for(i = 0; i <= n-1; i++)
{
r(0,i) = 0;
}
for(i = 1; i <= m-1; i++)
{
ap::vmove(&r(i, 0), &r(0, 0), ap::vlen(0,n-1));
}
for(i = 0; i <= k-1; i++)
{
ap::vmove(&r(i, i), &a(i, i), ap::vlen(i,n-1));
}
}
/*************************************************************************
Obsolete 1-based subroutine. See RMatrixQR for 0-based replacement.
*************************************************************************/
void qrdecomposition(ap::real_2d_array& a,
int m,
int n,
ap::real_1d_array& tau)
{
ap::real_1d_array work;
ap::real_1d_array t;
int i;
int k;
int mmip1;
int minmn;
double tmp;
minmn = ap::minint(m, n);
work.setbounds(1, n);
t.setbounds(1, m);
tau.setbounds(1, minmn);
//
// Test the input arguments
//
k = ap::minint(m, n);
for(i = 1; i <= k; i++)
{
//
// Generate elementary reflector H(i) to annihilate A(i+1:m,i)
//
mmip1 = m-i+1;
ap::vmove(t.getvector(1, mmip1), a.getcolumn(i, i, m));
generatereflection(t, mmip1, tmp);
tau(i) = tmp;
ap::vmove(a.getcolumn(i, i, m), t.getvector(1, mmip1));
t(1) = 1;
if( i<n )
{
//
// Apply H(i) to A(i:m,i+1:n) from the left
//
applyreflectionfromtheleft(a, tau(i), t, i, m, i+1, n, work);
}
}
}
/*************************************************************************
Obsolete 1-based subroutine. See RMatrixQRUnpackQ for 0-based replacement.
*************************************************************************/
void unpackqfromqr(const ap::real_2d_array& a,
int m,
int n,
const ap::real_1d_array& tau,
int qcolumns,
ap::real_2d_array& q)
{
int i;
int j;
int k;
int minmn;
ap::real_1d_array v;
ap::real_1d_array work;
int vm;
ap::ap_error::make_assertion(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
if( m==0||n==0||qcolumns==0 )
{
return;
}
//
// init
//
minmn = ap::minint(m, n);
k = ap::minint(minmn, qcolumns);
q.setbounds(1, m, 1, qcolumns);
v.setbounds(1, m);
work.setbounds(1, qcolumns);
for(i = 1; i <= m; i++)
{
for(j = 1; j <= qcolumns; j++)
{
if( i==j )
{
q(i,j) = 1;
}
else
{
q(i,j) = 0;
}
}
}
//
// unpack Q
//
for(i = k; i >= 1; i--)
{
//
// Apply H(i)
//
vm = m-i+1;
ap::vmove(v.getvector(1, vm), a.getcolumn(i, i, m));
v(1) = 1;
applyreflectionfromtheleft(q, tau(i), v, i, m, 1, qcolumns, work);
}
}
/*************************************************************************
Obsolete 1-based subroutine. See RMatrixQR for 0-based replacement.
*************************************************************************/
void qrdecompositionunpacked(ap::real_2d_array a,
int m,
int n,
ap::real_2d_array& q,
ap::real_2d_array& r)
{
int i;
int k;
ap::real_1d_array tau;
ap::real_1d_array work;
ap::real_1d_array v;
k = ap::minint(m, n);
if( n<=0 )
{
return;
}
work.setbounds(1, m);
v.setbounds(1, m);
q.setbounds(1, m, 1, m);
r.setbounds(1, m, 1, n);
//
// QRDecomposition
//
qrdecomposition(a, m, n, tau);
//
// R
//
for(i = 1; i <= n; i++)
{
r(1,i) = 0;
}
for(i = 2; i <= m; i++)
{
ap::vmove(&r(i, 1), &r(1, 1), ap::vlen(1,n));
}
for(i = 1; i <= k; i++)
{
ap::vmove(&r(i, i), &a(i, i), ap::vlen(i,n));
}
//
// Q
//
unpackqfromqr(a, m, n, tau, m, q);
}
|