1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
/*************************************************************************
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
Contributors:
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
pseudocode.
See subroutines comments for additional copyrights.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.
- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include "alglib/rotations.h"
/*************************************************************************
Application of a sequence of elementary rotations to a matrix
The algorithm pre-multiplies the matrix by a sequence of rotation
transformations which is given by arrays C and S. Depending on the value
of the IsForward parameter either 1 and 2, 3 and 4 and so on (if IsForward=true)
rows are rotated, or the rows N and N-1, N-2 and N-3 and so on, are rotated.
Not the whole matrix but only a part of it is transformed (rows from M1 to
M2, columns from N1 to N2). Only the elements of this submatrix are changed.
Input parameters:
IsForward - the sequence of the rotation application.
M1,M2 - the range of rows to be transformed.
N1, N2 - the range of columns to be transformed.
C,S - transformation coefficients.
Array whose index ranges within [1..M2-M1].
A - processed matrix.
WORK - working array whose index ranges within [N1..N2].
Output parameters:
A - transformed matrix.
Utility subroutine.
*************************************************************************/
void applyrotationsfromtheleft(bool isforward,
int m1,
int m2,
int n1,
int n2,
const ap::real_1d_array& c,
const ap::real_1d_array& s,
ap::real_2d_array& a,
ap::real_1d_array& work)
{
int j;
int jp1;
double ctemp;
double stemp;
double temp;
if( m1>m2||n1>n2 )
{
return;
}
//
// Form P * A
//
if( isforward )
{
if( n1!=n2 )
{
//
// Common case: N1<>N2
//
for(j = m1; j <= m2-1; j++)
{
ctemp = c(j-m1+1);
stemp = s(j-m1+1);
if( ctemp!=1||stemp!=0 )
{
jp1 = j+1;
ap::vmove(&work(n1), &a(jp1, n1), ap::vlen(n1,n2), ctemp);
ap::vsub(&work(n1), &a(j, n1), ap::vlen(n1,n2), stemp);
ap::vmul(&a(j, n1), ap::vlen(n1,n2), ctemp);
ap::vadd(&a(j, n1), &a(jp1, n1), ap::vlen(n1,n2), stemp);
ap::vmove(&a(jp1, n1), &work(n1), ap::vlen(n1,n2));
}
}
}
else
{
//
// Special case: N1=N2
//
for(j = m1; j <= m2-1; j++)
{
ctemp = c(j-m1+1);
stemp = s(j-m1+1);
if( ctemp!=1||stemp!=0 )
{
temp = a(j+1,n1);
a(j+1,n1) = ctemp*temp-stemp*a(j,n1);
a(j,n1) = stemp*temp+ctemp*a(j,n1);
}
}
}
}
else
{
if( n1!=n2 )
{
//
// Common case: N1<>N2
//
for(j = m2-1; j >= m1; j--)
{
ctemp = c(j-m1+1);
stemp = s(j-m1+1);
if( ctemp!=1||stemp!=0 )
{
jp1 = j+1;
ap::vmove(&work(n1), &a(jp1, n1), ap::vlen(n1,n2), ctemp);
ap::vsub(&work(n1), &a(j, n1), ap::vlen(n1,n2), stemp);
ap::vmul(&a(j, n1), ap::vlen(n1,n2), ctemp);
ap::vadd(&a(j, n1), &a(jp1, n1), ap::vlen(n1,n2), stemp);
ap::vmove(&a(jp1, n1), &work(n1), ap::vlen(n1,n2));
}
}
}
else
{
//
// Special case: N1=N2
//
for(j = m2-1; j >= m1; j--)
{
ctemp = c(j-m1+1);
stemp = s(j-m1+1);
if( ctemp!=1||stemp!=0 )
{
temp = a(j+1,n1);
a(j+1,n1) = ctemp*temp-stemp*a(j,n1);
a(j,n1) = stemp*temp+ctemp*a(j,n1);
}
}
}
}
}
/*************************************************************************
Application of a sequence of elementary rotations to a matrix
The algorithm post-multiplies the matrix by a sequence of rotation
transformations which is given by arrays C and S. Depending on the value
of the IsForward parameter either 1 and 2, 3 and 4 and so on (if IsForward=true)
rows are rotated, or the rows N and N-1, N-2 and N-3 and so on are rotated.
Not the whole matrix but only a part of it is transformed (rows from M1
to M2, columns from N1 to N2). Only the elements of this submatrix are changed.
Input parameters:
IsForward - the sequence of the rotation application.
M1,M2 - the range of rows to be transformed.
N1, N2 - the range of columns to be transformed.
C,S - transformation coefficients.
Array whose index ranges within [1..N2-N1].
A - processed matrix.
WORK - working array whose index ranges within [M1..M2].
Output parameters:
A - transformed matrix.
Utility subroutine.
*************************************************************************/
void applyrotationsfromtheright(bool isforward,
int m1,
int m2,
int n1,
int n2,
const ap::real_1d_array& c,
const ap::real_1d_array& s,
ap::real_2d_array& a,
ap::real_1d_array& work)
{
int j;
int jp1;
double ctemp;
double stemp;
double temp;
//
// Form A * P'
//
if( isforward )
{
if( m1!=m2 )
{
//
// Common case: M1<>M2
//
for(j = n1; j <= n2-1; j++)
{
ctemp = c(j-n1+1);
stemp = s(j-n1+1);
if( ctemp!=1||stemp!=0 )
{
jp1 = j+1;
ap::vmove(work.getvector(m1, m2), a.getcolumn(jp1, m1, m2), ctemp);
ap::vsub(work.getvector(m1, m2), a.getcolumn(j, m1, m2), stemp);
ap::vmul(a.getcolumn(j, m1, m2), ctemp);
ap::vadd(a.getcolumn(j, m1, m2), a.getcolumn(jp1, m1, m2), stemp);
ap::vmove(a.getcolumn(jp1, m1, m2), work.getvector(m1, m2));
}
}
}
else
{
//
// Special case: M1=M2
//
for(j = n1; j <= n2-1; j++)
{
ctemp = c(j-n1+1);
stemp = s(j-n1+1);
if( ctemp!=1||stemp!=0 )
{
temp = a(m1,j+1);
a(m1,j+1) = ctemp*temp-stemp*a(m1,j);
a(m1,j) = stemp*temp+ctemp*a(m1,j);
}
}
}
}
else
{
if( m1!=m2 )
{
//
// Common case: M1<>M2
//
for(j = n2-1; j >= n1; j--)
{
ctemp = c(j-n1+1);
stemp = s(j-n1+1);
if( ctemp!=1||stemp!=0 )
{
jp1 = j+1;
ap::vmove(work.getvector(m1, m2), a.getcolumn(jp1, m1, m2), ctemp);
ap::vsub(work.getvector(m1, m2), a.getcolumn(j, m1, m2), stemp);
ap::vmul(a.getcolumn(j, m1, m2), ctemp);
ap::vadd(a.getcolumn(j, m1, m2), a.getcolumn(jp1, m1, m2), stemp);
ap::vmove(a.getcolumn(jp1, m1, m2), work.getvector(m1, m2));
}
}
}
else
{
//
// Special case: M1=M2
//
for(j = n2-1; j >= n1; j--)
{
ctemp = c(j-n1+1);
stemp = s(j-n1+1);
if( ctemp!=1||stemp!=0 )
{
temp = a(m1,j+1);
a(m1,j+1) = ctemp*temp-stemp*a(m1,j);
a(m1,j) = stemp*temp+ctemp*a(m1,j);
}
}
}
}
}
/*************************************************************************
The subroutine generates the elementary rotation, so that:
[ CS SN ] . [ F ] = [ R ]
[ -SN CS ] [ G ] [ 0 ]
CS**2 + SN**2 = 1
*************************************************************************/
void generaterotation(double f, double g, double& cs, double& sn, double& r)
{
double f1;
double g1;
if( g==0 )
{
cs = 1;
sn = 0;
r = f;
}
else
{
if( f==0 )
{
cs = 0;
sn = 1;
r = g;
}
else
{
f1 = f;
g1 = g;
r = sqrt(ap::sqr(f1)+ap::sqr(g1));
cs = f1/r;
sn = g1/r;
if( fabs(f)>fabs(g)&&cs<0 )
{
cs = -cs;
sn = -sn;
r = -r;
}
}
}
}
|