1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
/*
** libproj -- library of cartographic projections
**
** Copyright (c) 2003, 2006 Gerald I. Evenden
*/
static const char
LIBPROJ_ID[] = "Id";
/*
** Permission is hereby granted, free of charge, to any person obtaining
** a copy of this software and associated documentation files (the
** "Software"), to deal in the Software without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Software, and to
** permit persons to whom the Software is furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#define PROJ_PARMS__ \
void *en, *en2; \
double phi1; \
double phit; \
double n, kRF; \
int czech;
#define PROJ_LIB__
#include <lib_proj.h>
PROJ_HEAD(kocc, "Krovak Oblique Conformal Conic")
"\n\tConic, Sph&Ell\n\tlat_1= lat_t=";
FORWARD(e_forward); /* ellipsoid */
double rho, theta;
lp = proj_translate(proj_gauss(lp, P->en), P->en2);
rho = P->kRF / pow(tan(.5 * lp.phi + FORTPI), P->n);
theta = P->n * lp.lam;
if (P->czech) { /* Czech grid mode */
xy.x = rho * cos(theta);
xy.y = - rho * sin(theta);
} else { /* proper math mode */
xy.x = rho * sin(theta);
xy.y = - rho * cos(theta);
}
return (xy);
}
INVERSE(e_inverse); /* ellipsoid */
double x, y, rho, theta;
if (P->czech) {
x = -xy.y;
y = -xy.x;
} else {
x = xy.x;
y = xy.y;
}
rho = hypot(x, y);
if (P->n < 0) rho = - rho;
theta = atan2(x, -y);
lp.phi = 2. * atan(pow(P->kRF / rho, 1./P->n)) - HALFPI;
lp.lam = theta / P->n;
return (proj_inv_gauss(proj_inv_translate(lp, P->en2), P->en));
}
FREEUP; if (P) {
if (P->en) free(P->en);
if (P->en2) free(P->en2);
free(P);
}
}
ENTRY0(kocc)
double Rc, chi;
P->czech = proj_param(P->params, "tczech").i;
P->phi1 = proj_param(P->params, "rlat_1").f;
P->phit = proj_param(P->params, "rlat_t").f;
if (!(P->en = proj_gauss_ini(P->e, P->phi0, &chi, &Rc))) E_ERROR_0;
if (!(P->en2 = proj_translate_ini(PI + P->phit, 0.))) E_ERROR_0;
P->n = sin(P->phi1);
P->kRF = P->k0 * Rc * cos(P->phi1) *
pow(tan(0.5 * P->phi1 + FORTPI) , P->n) / P->n;
P->inv = e_inverse;
P->fwd = e_forward;
ENDENTRY(P)
/*
** Log: proj_kocc.c
** Revision 3.1 2006/01/11 01:38:18 gie
** Initial
**
*/
|