File: jdsample.c

package info (click to toggle)
vtk6 6.1.0%2Bdfsg2-6
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 165,164 kB
  • ctags: 226,428
  • sloc: cpp: 1,354,490; ansic: 730,748; python: 227,134; tcl: 48,285; xml: 8,290; yacc: 4,832; java: 3,827; perl: 3,108; lex: 1,809; sh: 1,437; asm: 471; makefile: 229
file content (486 lines) | stat: -rw-r--r-- 17,079 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 * jdsample.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains upsampling routines.
 *
 * Upsampling input data is counted in "row groups".  A row group
 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
 * sample rows of each component.  Upsampling will normally produce
 * max_v_samp_factor pixel rows from each row group (but this could vary
 * if the upsampler is applying a scale factor of its own).
 *
 * An excellent reference for image resampling is
 *   Digital Image Warping, George Wolberg, 1990.
 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Pointer to routine to upsample a single component */
typedef JMETHOD(void, upsample1_ptr,
                (j_decompress_ptr cinfo, jpeg_component_info * compptr,
                 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));

/* Private subobject */

typedef struct {
  struct jpeg_upsampler pub;    /* public fields */

  /* Color conversion buffer.  When using separate upsampling and color
   * conversion steps, this buffer holds one upsampled row group until it
   * has been color converted and output.
   * Note: we do not allocate any storage for component(s) which are full-size,
   * ie do not need rescaling.  The corresponding entry of color_buf[] is
   * simply set to point to the input data array, thereby avoiding copying.
   */
  JSAMPARRAY color_buf[MAX_COMPONENTS];

  /* Per-component upsampling method pointers */
  upsample1_ptr methods[MAX_COMPONENTS];

  int next_row_out;             /* counts rows emitted from color_buf */
  JDIMENSION rows_to_go;        /* counts rows remaining in image */

  /* Height of an input row group for each component. */
  int rowgroup_height[MAX_COMPONENTS];

  /* These arrays save pixel expansion factors so that int_expand need not
   * recompute them each time.  They are unused for other upsampling methods.
   */
  UINT8 h_expand[MAX_COMPONENTS];
  UINT8 v_expand[MAX_COMPONENTS];
} my_upsampler;

typedef my_upsampler * my_upsample_ptr;


/*
 * Initialize for an upsampling pass.
 */

METHODDEF(void)
start_pass_upsample (j_decompress_ptr cinfo)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;

  /* Mark the conversion buffer empty */
  upsample->next_row_out = cinfo->max_v_samp_factor;
  /* Initialize total-height counter for detecting bottom of image */
  upsample->rows_to_go = cinfo->output_height;
}


/*
 * Control routine to do upsampling (and color conversion).
 *
 * In this version we upsample each component independently.
 * We upsample one row group into the conversion buffer, then apply
 * color conversion a row at a time.
 */

METHODDEF(void)
sep_upsample (j_decompress_ptr cinfo,
              JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
              JDIMENSION in_row_groups_avail,
              JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
              JDIMENSION out_rows_avail)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  int ci;
  jpeg_component_info * compptr;
  JDIMENSION num_rows;

  in_row_groups_avail = 0;
  /* Fill the conversion buffer, if it's empty */
  if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
         ci++, compptr++) {
      /* Invoke per-component upsample method.  Notice we pass a POINTER
       * to color_buf[ci], so that fullsize_upsample can change it.
       */
      (*upsample->methods[ci]) (cinfo, compptr,
        input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
        upsample->color_buf + ci);
    }
    upsample->next_row_out = 0;
  }

  /* Color-convert and emit rows */

  /* How many we have in the buffer: */
  num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
  /* Not more than the distance to the end of the image.  Need this test
   * in case the image height is not a multiple of max_v_samp_factor:
   */
  if (num_rows > upsample->rows_to_go) 
    num_rows = upsample->rows_to_go;
  /* And not more than what the client can accept: */
  out_rows_avail -= *out_row_ctr;
  if (num_rows > out_rows_avail)
    num_rows = out_rows_avail;

  (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
                                     (JDIMENSION) upsample->next_row_out,
                                     output_buf + *out_row_ctr,
                                     (int) num_rows);

  /* Adjust counts */
  *out_row_ctr += num_rows;
  upsample->rows_to_go -= num_rows;
  upsample->next_row_out += num_rows;
  /* When the buffer is emptied, declare this input row group consumed */
  if (upsample->next_row_out >= cinfo->max_v_samp_factor)
    (*in_row_group_ctr)++;
}


/*
 * These are the routines invoked by sep_upsample to upsample pixel values
 * of a single component.  One row group is processed per call.
 */


/*
 * For full-size components, we just make color_buf[ci] point at the
 * input buffer, and thus avoid copying any data.  Note that this is
 * safe only because sep_upsample doesn't declare the input row group
 * "consumed" until we are done color converting and emitting it.
 */

METHODDEF(void)
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
                   JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  cinfo = 0;
  compptr = 0;
  *output_data_ptr = input_data;
}


/*
 * This is a no-op version used for "uninteresting" components.
 * These components will not be referenced by color conversion.
 */

METHODDEF(void)
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
               JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  cinfo = 0;
  compptr = 0;
  input_data = 0;
  *output_data_ptr = NULL;      /* safety check */
}


/*
 * This version handles any integral sampling ratios.
 * This is not used for typical JPEG files, so it need not be fast.
 * Nor, for that matter, is it particularly accurate: the algorithm is
 * simple replication of the input pixel onto the corresponding output
 * pixels.  The hi-falutin sampling literature refers to this as a
 * "box filter".  A box filter tends to introduce visible artifacts,
 * so if you are actually going to use 3:1 or 4:1 sampling ratios
 * you would be well advised to improve this code.
 */

METHODDEF(void)
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
              JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  JSAMPARRAY output_data = *output_data_ptr;
  register JSAMPROW inptr, outptr;
  register JSAMPLE invalue;
  register int h;
  JSAMPROW outend;
  int h_expand, v_expand;
  int inrow, outrow;

  h_expand = upsample->h_expand[compptr->component_index];
  v_expand = upsample->v_expand[compptr->component_index];

  inrow = outrow = 0;
  while (outrow < cinfo->max_v_samp_factor) {
    /* Generate one output row with proper horizontal expansion */
    inptr = input_data[inrow];
    outptr = output_data[outrow];
    outend = outptr + cinfo->output_width;
    while (outptr < outend) {
      invalue = *inptr++;       /* don't need GETJSAMPLE() here */
      for (h = h_expand; h > 0; h--) {
        *outptr++ = invalue;
      }
    }
    /* Generate any additional output rows by duplicating the first one */
    if (v_expand > 1) {
      jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
                        v_expand-1, cinfo->output_width);
    }
    inrow++;
    outrow += v_expand;
  }
}


/*
 * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
 * It's still a box filter.
 */

METHODDEF(void)
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
               JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  JSAMPARRAY output_data = *output_data_ptr;
  register JSAMPROW inptr, outptr;
  register JSAMPLE invalue;
  JSAMPROW outend;
  int inrow;

  compptr = 0;
  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
    inptr = input_data[inrow];
    outptr = output_data[inrow];
    outend = outptr + cinfo->output_width;
    while (outptr < outend) {
      invalue = *inptr++;       /* don't need GETJSAMPLE() here */
      *outptr++ = invalue;
      *outptr++ = invalue;
    }
  }
}


/*
 * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
 * It's still a box filter.
 */

METHODDEF(void)
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
               JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  JSAMPARRAY output_data = *output_data_ptr;
  register JSAMPROW inptr, outptr;
  register JSAMPLE invalue;
  JSAMPROW outend;
  int inrow, outrow;

  compptr = 0;
  inrow = outrow = 0;
  while (outrow < cinfo->max_v_samp_factor) {
    inptr = input_data[inrow];
    outptr = output_data[outrow];
    outend = outptr + cinfo->output_width;
    while (outptr < outend) {
      invalue = *inptr++;       /* don't need GETJSAMPLE() here */
      *outptr++ = invalue;
      *outptr++ = invalue;
    }
    jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
                      1, cinfo->output_width);
    inrow++;
    outrow += 2;
  }
}


/*
 * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
 *
 * The upsampling algorithm is linear interpolation between pixel centers,
 * also known as a "triangle filter".  This is a good compromise between
 * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
 * of the way between input pixel centers.
 *
 * A note about the "bias" calculations: when rounding fractional values to
 * integer, we do not want to always round 0.5 up to the next integer.
 * If we did that, we'd introduce a noticeable bias towards larger values.
 * Instead, this code is arranged so that 0.5 will be rounded up or down at
 * alternate pixel locations (a simple ordered dither pattern).
 */

METHODDEF(void)
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
                     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  JSAMPARRAY output_data = *output_data_ptr;
  register JSAMPROW inptr, outptr;
  register int invalue;
  register JDIMENSION colctr;
  int inrow;

  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
    inptr = input_data[inrow];
    outptr = output_data[inrow];
    /* Special case for first column */
    invalue = GETJSAMPLE(*inptr++);
    *outptr++ = (JSAMPLE) invalue;
    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);

    for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
      /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
      invalue = GETJSAMPLE(*inptr++) * 3;
      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
    }

    /* Special case for last column */
    invalue = GETJSAMPLE(*inptr);
    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
    *outptr++ = (JSAMPLE) invalue;
  }
}


/*
 * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
 * Again a triangle filter; see comments for h2v1 case, above.
 *
 * It is OK for us to reference the adjacent input rows because we demanded
 * context from the main buffer controller (see initialization code).
 */

METHODDEF(void)
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
                     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
  JSAMPARRAY output_data = *output_data_ptr;
  register JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
  register int thiscolsum, lastcolsum, nextcolsum;
#else
  register INT32 thiscolsum, lastcolsum, nextcolsum;
#endif
  register JDIMENSION colctr;
  int inrow, outrow, v;

  inrow = outrow = 0;
  while (outrow < cinfo->max_v_samp_factor) {
    for (v = 0; v < 2; v++) {
      /* inptr0 points to nearest input row, inptr1 points to next nearest */
      inptr0 = input_data[inrow];
      if (v == 0)               /* next nearest is row above */
        inptr1 = input_data[inrow-1];
      else                      /* next nearest is row below */
        inptr1 = input_data[inrow+1];
      outptr = output_data[outrow++];

      /* Special case for first column */
      thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
      nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
      lastcolsum = thiscolsum; thiscolsum = nextcolsum;

      for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
        /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
        /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
        nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
        *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
        *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
        lastcolsum = thiscolsum; thiscolsum = nextcolsum;
      }

      /* Special case for last column */
      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
    }
    inrow++;
  }
}


/*
 * Module initialization routine for upsampling.
 */

GLOBAL(void)
jinit_upsampler (j_decompress_ptr cinfo)
{
  my_upsample_ptr upsample;
  int ci;
  jpeg_component_info * compptr;
  boolean need_buffer, do_fancy;
  int h_in_group, v_in_group, h_out_group, v_out_group;

  upsample = (my_upsample_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                SIZEOF(my_upsampler));
  cinfo->upsample = (struct jpeg_upsampler *) upsample;
  upsample->pub.start_pass = start_pass_upsample;
  upsample->pub.upsample = sep_upsample;
  upsample->pub.need_context_rows = FALSE; /* until we find out differently */

  if (cinfo->CCIR601_sampling)  /* this isn't supported */
    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);

  /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
   * so don't ask for it.
   */
  do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;

  /* Verify we can handle the sampling factors, select per-component methods,
   * and create storage as needed.
   */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Compute size of an "input group" after IDCT scaling.  This many samples
     * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
     */
    h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
                 cinfo->min_DCT_scaled_size;
    v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
                 cinfo->min_DCT_scaled_size;
    h_out_group = cinfo->max_h_samp_factor;
    v_out_group = cinfo->max_v_samp_factor;
    upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
    need_buffer = TRUE;
    if (! compptr->component_needed) {
      /* Don't bother to upsample an uninteresting component. */
      upsample->methods[ci] = noop_upsample;
      need_buffer = FALSE;
    } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
      /* Fullsize components can be processed without any work. */
      upsample->methods[ci] = fullsize_upsample;
      need_buffer = FALSE;
    } else if (h_in_group * 2 == h_out_group &&
               v_in_group == v_out_group) {
      /* Special cases for 2h1v upsampling */
      if (do_fancy && compptr->downsampled_width > 2)
        upsample->methods[ci] = h2v1_fancy_upsample;
      else
        upsample->methods[ci] = h2v1_upsample;
    } else if (h_in_group * 2 == h_out_group &&
               v_in_group * 2 == v_out_group) {
      /* Special cases for 2h2v upsampling */
      if (do_fancy && compptr->downsampled_width > 2) {
        upsample->methods[ci] = h2v2_fancy_upsample;
        upsample->pub.need_context_rows = TRUE;
      } else
        upsample->methods[ci] = h2v2_upsample;
    } else if ((h_out_group % h_in_group) == 0 &&
               (v_out_group % v_in_group) == 0) {
      /* Generic integral-factors upsampling method */
      upsample->methods[ci] = int_upsample;
      upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
      upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
    } else
      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
    if (need_buffer) {
      upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
        ((j_common_ptr) cinfo, JPOOL_IMAGE,
         (JDIMENSION) jround_up((long) cinfo->output_width,
                                (long) cinfo->max_h_samp_factor),
         (JDIMENSION) cinfo->max_v_samp_factor);
    }
  }
}