1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPlanesIntersection.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*----------------------------------------------------------------------------
Copyright (c) Sandia Corporation
See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
----------------------------------------------------------------------------*/
#include "vtkMath.h"
#include "vtkPlanesIntersection.h"
#include "vtkPointsProjectedHull.h"
#include "vtkFloatArray.h"
#include "vtkCell.h"
#include "vtkObjectFactory.h"
vtkStandardNewMacro(vtkPlanesIntersection);
// Experiment shows that we get plane equation values on the
// order of 10e-6 when the point is actually on the plane
#define VTK_SMALL_DOUBLE (10e-5)
const int Inside = 0;
const int Outside = 1;
const int Straddle = 2;
const int Xdim=0; // don't change these three values
const int Ydim=1;
const int Zdim=2;
vtkPlanesIntersection::vtkPlanesIntersection()
{
this->Plane = NULL;
this->regionPts = NULL;
}
vtkPlanesIntersection::~vtkPlanesIntersection()
{
if (this->regionPts)
{
this->regionPts->Delete();
this->regionPts = NULL;
}
delete [] this->Plane;
this->Plane = NULL;
}
void vtkPlanesIntersection::SetRegionVertices(vtkPoints *v)
{
int i;
if (this->regionPts) this->regionPts->Delete();
this->regionPts = vtkPointsProjectedHull::New();
if (v->GetDataType() == VTK_DOUBLE)
{
this->regionPts->DeepCopy(v);
}
else
{
this->regionPts->SetDataTypeToDouble();
int npts = v->GetNumberOfPoints();
this->regionPts->SetNumberOfPoints(npts);
double *pt;
for (i=0; i<npts; i++)
{
pt = v->GetPoint(i);
regionPts->SetPoint(i, pt[0], pt[1], pt[2]);
}
}
}
void vtkPlanesIntersection::SetRegionVertices(double *v, int nvertices)
{
int i;
if (this->regionPts) this->regionPts->Delete();
this->regionPts = vtkPointsProjectedHull::New();
this->regionPts->SetDataTypeToDouble();
this->regionPts->SetNumberOfPoints(nvertices);
for (i=0; i<nvertices; i++)
{
this->regionPts->SetPoint(i, v + (i*3));
}
}
int vtkPlanesIntersection::GetRegionVertices(double *v, int nvertices)
{
int i;
if (this->regionPts == NULL) this->ComputeRegionVertices();
int npts = this->regionPts->GetNumberOfPoints();
if (npts > nvertices) npts = nvertices;
for (i=0; i<npts; i++)
{
this->regionPts->GetPoint(i, v + i*3);
}
return npts;
}
int vtkPlanesIntersection::GetNumRegionVertices()
{
if (this->regionPts == NULL) this->ComputeRegionVertices();
return this->regionPts->GetNumberOfPoints();
}
//---------------------------------------------------------------------
// Determine whether the axis aligned box provided intersects
// the convex region bounded by the planes.
//---------------------------------------------------------------------
int vtkPlanesIntersection::IntersectsRegion(vtkPoints *R)
{
int plane;
int allInside=0;
int nplanes = this->GetNumberOfPlanes();
if (nplanes < 4)
{
vtkErrorMacro("invalid region - less than 4 planes");
return 0;
}
if (this->regionPts == NULL)
{
this->ComputeRegionVertices();
if (this->regionPts->GetNumberOfPoints() < 4)
{
vtkErrorMacro("Invalid region: zero-volume intersection");
return 0;
}
}
if (R->GetNumberOfPoints() < 8)
{
vtkErrorMacro("invalid box");
return 0;
}
int *where = new int[nplanes];
int intersects = -1;
// Here's the algorithm from Graphics Gems IV, page 81,
//
// R is an axis aligned box (could represent a region in a spatial
// spatial partitioning of a volume of data).
//
// P is a set of planes defining a convex region in space (could be
// a view frustum).
//
// The question is does P intersect R. We expect to be doing the
// calculation for one P and many Rs.
// You may wonder why we don't do what vtkClipPolyData does, which
// computes the following on every point of it's PolyData input:
//
// for each point in the input
// for each plane defining the convex region
// evaluate plane eq to determine if outside, inside or on plane
//
// For each cell, if some points are inside and some outside, then
// vtkClipPolyData decides it straddles the region and clips it. If
// every point is inside, it tosses it.
//
// The reason is that the Graphics Gems algorithm is faster in some
// cases (we may only need to evaluate one vertex of the box). And
// also because if the convex region passes through the box without
// including any vertices of the box, all box vertices will be
// "outside" and the algorithm will fail. vtkClipPolyData assumes
// cells are very small relative to the clip region. In general
// the axis-aligned box may be a large portion of world coordinate
// space, and the convex region a view frustum representing a
// small portion of the screen.
// 1. If R does not intersect P's bounding box, return 0.
if (this->IntersectsBoundingBox(R) == 0)
{
intersects = 0;
}
// 2. If P's bounding box is entirely inside R, return 1.
else if (this->EnclosesBoundingBox(R) == 1)
{
intersects = 1;
}
// 3. For each face plane F of P
//
// Suppose the plane equation is negative inside P and
// positive outside P. Choose the vertex (n) of R which is
// most in the direction of the negative pointing normal of
// the plane. The opposite vertex (p) is most in the
// direction of the positive pointing normal. (This is
// a very quick calculation.)
//
// If n is on the positive side of the plane, R is
// completely outside of P, so return 0.
//
// If n and p are both on the negative side, then R is on
// the "inside" of F. Keep track to see if all R is inside
// all planes defining the region.
else
{
if (this->Plane == NULL) this->SetPlaneEquations();
allInside = 1;
for (plane=0; plane < nplanes; plane++)
{
where[plane] = this->EvaluateFacePlane(plane, R);
if (allInside && (where[plane] != Inside))
{
allInside = 0;
}
if (where[plane] == Outside)
{
intersects = 0;
break;
}
}
}
if (intersects == -1)
{
// 4. If n and p were "inside" all faces, R is inside P
// so return 1.
if ( allInside)
{
intersects = 1;
}
// 5. For each of three orthographic projections (X, Y and Z)
//
// Compute the equations of the edge lines of P in those views.
//
// If R's projection lies outside any of these lines (using 2D
// version of n & p tests), return 0.
else if ((this->IntersectsProjection(R, Xdim) == 0) ||
(this->IntersectsProjection(R, Ydim) == 0) ||
(this->IntersectsProjection(R, Zdim) == 0) )
{
}
else
{
// 6. Return 1.
intersects = 1;
}
}
delete [] where;
return (intersects==1);
}
// a static convenience function - since we have all the machinery
// in this class, we can compute whether an arbitrary polygon intersects
// an axis aligned box
//
// it is assumed "pts" represents a planar polygon
//
int vtkPlanesIntersection::PolygonIntersectsBBox(double bounds[6], vtkPoints *pts)
{
// a bogus vtkPlanesIntersection object containing only one plane
vtkPlanesIntersection *pi = vtkPlanesIntersection::New();
pi->SetRegionVertices(pts);
vtkPoints *Box = vtkPoints::New();
Box->SetNumberOfPoints(8);
Box->SetPoint(0, bounds[0], bounds[2], bounds[4]);
Box->SetPoint(1, bounds[1], bounds[2], bounds[4]);
Box->SetPoint(2, bounds[1], bounds[3], bounds[4]);
Box->SetPoint(3, bounds[0], bounds[3], bounds[4]);
Box->SetPoint(4, bounds[0], bounds[2], bounds[5]);
Box->SetPoint(5, bounds[1], bounds[2], bounds[5]);
Box->SetPoint(6, bounds[1], bounds[3], bounds[5]);
Box->SetPoint(7, bounds[0], bounds[3], bounds[5]);
int intersects = -1;
// 1. Does Box intersect the polygon's bounding box?
if (pi->IntersectsBoundingBox(Box) == 0)
{
intersects = 0;
}
// 2. If so, does Box entirely contain the polygon's bounding box?
else if (pi->EnclosesBoundingBox(Box) == 1)
{
intersects = 1;
}
if (intersects == -1)
{
// 3. If not, determine whether the Box intersects the plane of the polygon
vtkPoints *origin = vtkPoints::New();
origin->SetNumberOfPoints(1);
origin->SetPoint(0, pts->GetPoint(0));
vtkFloatArray *normal = vtkFloatArray::New();
normal->SetNumberOfComponents(3);
normal->SetNumberOfTuples(1);
// find 3 points that are not co-linear and compute a normal
double nvec[3], p0[3], p1[3], pp[3];
int npts = pts->GetNumberOfPoints();
pts->GetPoint(0, p0);
pts->GetPoint(1, p1);
for (int p = 2; p < npts; p++)
{
pts->GetPoint(p, pp);
vtkPlanesIntersection::ComputeNormal(p0, p1, pp, nvec);
if (vtkPlanesIntersection::GoodNormal(nvec))
{
break;
}
}
normal->SetTuple(0, nvec);
pi->SetPoints(origin);
pi->SetNormals(normal);
origin->Delete();
normal->Delete();
pi->SetPlaneEquations();
int where = pi->EvaluateFacePlane(0, Box);
if (where != Straddle)
{
intersects = 0;
}
}
if (intersects == -1)
{
// 4. The Box intersects the plane of the polygon.
//
// For each of three orthographic projections (X, Y and Z),
// compute the equations of the edge lines of the polygon in those views.
//
// If Box's projection lies outside any of these projections, they
// don't intersect in 3D. Otherwise they do intersect in 3D.
//
// KDM: I'm pretty sure the above statement is untrue. I can think of a
// situation where all 3 projections intersect, but the 3D intersection
// does not. However, if the two intersect in 3D, then they will
// intersect in the 3 2D projections. Since I'm not worried about
// false positives, I'm not going to fix this right now.
if ((pi->IntersectsProjection(Box, Xdim) == 0) ||
(pi->IntersectsProjection(Box, Ydim) == 0) ||
(pi->IntersectsProjection(Box, Zdim) == 0) )
{
intersects = 0;
}
else
{
intersects = 1;
}
}
Box->Delete();
pi->Delete();
return intersects;
}
//---------------------------------------------------------------------
// Some convenience functions that build a vtkPlanesIntersection object
// out of a convex region.
//---------------------------------------------------------------------
// a static convenience function that converts a 3D cell into a
// vtkPlanesIntersection object
vtkPlanesIntersection *vtkPlanesIntersection::Convert3DCell(vtkCell *cell)
{
int i;
int nfaces = cell->GetNumberOfFaces();
vtkPoints *origins = vtkPoints::New();
origins->SetNumberOfPoints(nfaces);
vtkFloatArray *normals = vtkFloatArray::New();
normals->SetNumberOfComponents(3);
normals->SetNumberOfTuples(nfaces);
double inside[3] = {0.0, 0.0, 0.0};
for (i=0; i < nfaces; i++)
{
vtkCell *face = cell->GetFace(i);
vtkPoints *facePts = face->GetPoints();
int npts = facePts->GetNumberOfPoints();
double p0[3], p1[3], pp[3], n[3];
facePts->GetPoint(0, p0);
facePts->GetPoint(1, p1);
for (int p = 2; p < npts; p++)
{
facePts->GetPoint(p, pp);
vtkPlanesIntersection::ComputeNormal(pp, p1, p0, n);
if (vtkPlanesIntersection::GoodNormal(n))
{
break;
}
}
origins->SetPoint(i, pp);
normals->SetTuple(i, n);
inside[0] += p1[0];
inside[1] += p1[1];
inside[2] += p1[2];
}
inside[0] /= static_cast<double>(nfaces);
inside[1] /= static_cast<double>(nfaces);
inside[2] /= static_cast<double>(nfaces);
// ensure that all normals are outward pointing
for (i=0; i < nfaces; i++)
{
double ns[3], xs[3];
double n[3], x[3], p[4];
normals->GetTuple(i, ns);
origins->GetPoint(i, xs);
n[0] = ns[0];
x[0] = xs[0];
n[1] = ns[1];
x[1] = xs[1];
n[2] = ns[2];
x[2] = xs[2];
double outside[3];
outside[0] = x[0] + n[0];
outside[1] = x[1] + n[1];
outside[2] = x[2] + n[2];
vtkPlanesIntersection::PlaneEquation(n, x, p);
double insideVal = vtkPlanesIntersection::EvaluatePlaneEquation(inside, p);
double normalDirection =
vtkPlanesIntersection::EvaluatePlaneEquation(outside, p);
int sameSide =
( (insideVal < 0) && (normalDirection < 0)) ||
( (insideVal > 0) && (normalDirection > 0));
if (sameSide)
{
ns[0] = -ns[0];
ns[1] = -ns[1];
ns[2] = -ns[2];
normals->SetTuple(i, ns);
}
}
vtkPlanesIntersection *pi = vtkPlanesIntersection::New();
pi->SetPoints(origins);
pi->SetNormals(normals);
origins->Delete();
normals->Delete();
pi->SetRegionVertices(cell->GetPoints());
return pi;
}
//--------------------------------------------------------------------------
void vtkPlanesIntersection::ComputeNormal(double *p1, double *p2, double *p3,
double normal[3])
{
double v1[3], v2[3];
v1[0] = p1[0] - p2[0]; v1[1] = p1[1] - p2[1]; v1[2] = p1[2] - p2[2];
v2[0] = p3[0] - p2[0]; v2[1] = p3[1] - p2[1]; v2[2] = p3[2] - p2[2];
vtkMath::Cross(v1, v2, normal);
return;
}
int vtkPlanesIntersection::GoodNormal(double *n)
{
if ( (n[0] < VTK_SMALL_DOUBLE) || (n[0] > VTK_SMALL_DOUBLE) ||
(n[1] < VTK_SMALL_DOUBLE) || (n[1] > VTK_SMALL_DOUBLE) ||
(n[2] < VTK_SMALL_DOUBLE) || (n[2] > VTK_SMALL_DOUBLE) )
{
return 1;
}
else
{
return 0;
}
}
double vtkPlanesIntersection::EvaluatePlaneEquation(double *x, double *p)
{
return (x[0]*p[0] + x[1]*p[1] + x[2]*p[2] + p[3]);
}
void vtkPlanesIntersection::PlaneEquation(double *n, double *x, double *p)
{
p[0] = n[0];
p[1] = n[1];
p[2] = n[2];
p[3] = -(n[0]*x[0] + n[1]*x[1] + n[2]*x[2]);
}
// The plane equations ***********************************************
void vtkPlanesIntersection::SetPlaneEquations()
{
int i;
int nplanes = this->GetNumberOfPlanes();
// vtkPlanes stores normals & pts instead of
// plane equation coefficients
delete [] this->Plane;
this->Plane = new double[nplanes*4];
for (i=0; i<nplanes; i++)
{
double n[3], x[3];
this->Points->GetPoint(i, x);
this->Normals->GetTuple(i, n);
double nd[3], xd[3];
nd[0] = n[0]; xd[0] = x[0];
nd[1] = n[1]; xd[1] = x[1];
nd[2] = n[2]; xd[2] = x[2];
double *p = this->Plane + (i*4);
vtkPlanesIntersection::PlaneEquation(nd, xd, p);
}
}
// Compute region vertices if not set explicity ********************
void vtkPlanesIntersection::ComputeRegionVertices()
{
double M[3][3];
double rhs[3];
double testv[3];
int i, j, k;
int nplanes = this->GetNumberOfPlanes();
if (this->regionPts) this->regionPts->Delete();
this->regionPts = vtkPointsProjectedHull::New();
if (nplanes <= 3)
{
vtkErrorMacro( <<
"vtkPlanesIntersection::ComputeRegionVertices invalid region");
return;
}
if (this->Plane == NULL)
{
this->SetPlaneEquations();
}
// This is an expensive process. Better if vertices are
// set in SetRegionVertices(). We're testing every triple of
// planes to see if they intersect in a point that is
// not "outside" any plane.
int nvertices=0;
for (i=0; i < nplanes; i++)
{
for (j=i+1; j < nplanes; j++)
{
for (k=j+1; k < nplanes; k++)
{
this->planesMatrix(i, j, k, M);
int notInvertible = this->Invert3x3(M);
if (notInvertible) continue;
this->planesRHS(i, j, k, rhs);
vtkMath::Multiply3x3(M, rhs, testv);
if (duplicate(testv)) continue;
int outside = this->outsideRegion(testv);
if (!outside)
{
this->regionPts->InsertPoint(nvertices, testv);
nvertices++;
}
}
}
}
}
int vtkPlanesIntersection::duplicate(double testv[3]) const
{
int i;
double pt[3];
int npts = this->regionPts->GetNumberOfPoints();
for (i=0; i<npts; i++)
{
this->regionPts->GetPoint(i, pt);
if ( (pt[0] == testv[0]) && (pt[1] == testv[1]) && (pt[2] == testv[2]))
{
return 1;
}
}
return 0;
}
void vtkPlanesIntersection::planesMatrix(int p1, int p2, int p3, double M[3][3]) const
{
int i;
for (i=0; i<3; i++)
{
M[0][i] = this->Plane[p1*4 + i];
M[1][i] = this->Plane[p2*4 + i];
M[2][i] = this->Plane[p3*4 + i];
}
}
void vtkPlanesIntersection::planesRHS(int p1, int p2, int p3, double r[3]) const
{
r[0] = -(this->Plane[p1*4 + 3]);
r[1] = -(this->Plane[p2*4 + 3]);
r[2] = -(this->Plane[p3*4 + 3]);
}
int vtkPlanesIntersection::outsideRegion(double testv[3])
{
int i;
int outside = 0;
int nplanes = this->GetNumberOfPlanes();
for (i=0; i<nplanes; i++)
{
int row=i*4;
double fx =
vtkPlanesIntersection::EvaluatePlaneEquation(testv, this->Plane + row);
if (fx > VTK_SMALL_DOUBLE)
{
outside = 1;
break;
}
}
return outside;
}
int vtkPlanesIntersection::Invert3x3(double M[3][3])
{
int i, j;
double temp[3][3];
double det = vtkMath::Determinant3x3(M);
if ( (det > -VTK_SMALL_DOUBLE) && (det < VTK_SMALL_DOUBLE)) return -1;
vtkMath::Invert3x3(M, temp);
for (i=0; i<3; i++)
{
for (j=0; j<3; j++)
{
M[i][j] = temp[i][j];
}
}
return 0;
}
// Region / box intersection tests *******************************
int vtkPlanesIntersection::IntersectsBoundingBox(vtkPoints *R)
{
double BoxBounds[6], RegionBounds[6];
R->GetBounds(BoxBounds);
this->regionPts->GetBounds(RegionBounds);
if ((BoxBounds[1] < RegionBounds[0]) ||
(BoxBounds[0] > RegionBounds[1]) ||
(BoxBounds[3] < RegionBounds[2]) ||
(BoxBounds[2] > RegionBounds[3]) ||
(BoxBounds[5] < RegionBounds[4]) ||
(BoxBounds[4] > RegionBounds[5]))
{
return 0;
}
return 1;
}
int vtkPlanesIntersection::EnclosesBoundingBox(vtkPoints *R)
{
double BoxBounds[6], RegionBounds[6];
R->GetBounds(BoxBounds);
this->regionPts->GetBounds(RegionBounds);
if ((BoxBounds[0] > RegionBounds[0]) ||
(BoxBounds[1] < RegionBounds[1]) ||
(BoxBounds[2] > RegionBounds[2]) ||
(BoxBounds[3] < RegionBounds[3]) ||
(BoxBounds[4] > RegionBounds[4]) ||
(BoxBounds[5] < RegionBounds[5]))
{
return 0;
}
return 1;
}
int vtkPlanesIntersection::EvaluateFacePlane(int plane, vtkPoints *R)
{
int i;
double n[3], bounds[6];
double withN[3], oppositeN[3];
R->GetBounds(bounds);
this->Normals->GetTuple(plane, n);
// Find vertex of R most in direction of normal, and find
// oppposite vertex
for (i=0; i<3; i++)
{
if (n[i] < 0)
{
withN[i] = bounds[i*2];
oppositeN[i] = bounds[i*2 + 1];
}
else
{
withN[i] = bounds[i*2 + 1];
oppositeN[i] = bounds[i*2];
}
}
// Determine whether R is in negative half plane ("inside" frustum),
// positive half plane, or whether it straddles the plane.
// The normal points in direction of positive half plane.
double *p = this->Plane + (plane * 4);
double negVal =
vtkPlanesIntersection::EvaluatePlaneEquation(oppositeN, p);
if (negVal > 0)
{
return Outside;
}
double posVal =
vtkPlanesIntersection::EvaluatePlaneEquation(withN, p);
if (posVal < 0)
{
return Inside;
}
else return Straddle;
}
int vtkPlanesIntersection::IntersectsProjection(vtkPoints *R, int dir)
{
int intersects = 0;
switch (dir)
{
case Xdim:
intersects = this->regionPts->RectangleIntersectionX(R);
break;
case Ydim:
intersects = this->regionPts->RectangleIntersectionY(R);
break;
case Zdim:
intersects = this->regionPts->RectangleIntersectionZ(R);
break;
}
return intersects;
}
void vtkPlanesIntersection::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Plane: " << this->Plane << endl;
os << indent << "regionPts: " << this->regionPts << endl;
int i, npts;
if (this->Points)
{
npts = this->Points->GetNumberOfPoints();
for (i=0; i<npts; i++)
{
double *pt = this->Points->GetPoint(i);
double *n = this->Normals->GetTuple(i);
os << indent << "Origin " << pt[0] << " " << pt[1] << " " << pt[2] << " " ;
os << indent << "Normal " << n[0] << " " << n[1] << " " << n[2] << endl;
}
}
if (this->regionPts)
{
npts = this->regionPts->GetNumberOfPoints();
for (i=0; i<npts; i++)
{
double *pt = this->regionPts->GetPoint(i);
os << indent << "Vertex " << pt[0] << " " << pt[1] << " " << pt[2] << endl;
}
}
}
|