1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkSuperquadric.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/* vtkSuperQuadric originally written by Michael Halle,
Brigham and Women's Hospital, July 1998.
Based on "Rigid physically based superquadrics", A. H. Barr,
in "Graphics Gems III", David Kirk, ed., Academic Press, 1992.
*/
#include "vtkSuperquadric.h"
#include "vtkObjectFactory.h"
#include <math.h>
vtkStandardNewMacro(vtkSuperquadric);
// Construct with superquadric radius of 0.5, toroidal off, center at 0.0,
// scale (1,1,1), size 0.5, phi roundness 1.0, and theta roundness 0.0.
vtkSuperquadric::vtkSuperquadric()
{
this->Toroidal = 0;
this->Thickness = 0.3333;
this->PhiRoundness = 0.0;
this->SetPhiRoundness(1.0);
this->ThetaRoundness = 0.0;
this->SetThetaRoundness(1.0);
this->Center[0] = this->Center[1] = this->Center[2] = 0.0;
this->Scale[0] = this->Scale[1] = this->Scale[2] = 1.0;
this->Size = .5;
}
static const double MAX_FVAL = 1e12;
static double VTK_MIN_SUPERQUADRIC_ROUNDNESS = 1e-24;
void vtkSuperquadric::SetThetaRoundness(double e)
{
if(e < VTK_MIN_SUPERQUADRIC_ROUNDNESS)
{
e = VTK_MIN_SUPERQUADRIC_ROUNDNESS;
}
if (this->ThetaRoundness != e)
{
this->ThetaRoundness = e;
this->Modified();
}
}
void vtkSuperquadric::SetPhiRoundness(double e)
{
if(e < VTK_MIN_SUPERQUADRIC_ROUNDNESS)
{
e = VTK_MIN_SUPERQUADRIC_ROUNDNESS;
}
if (this->PhiRoundness != e)
{
this->PhiRoundness = e;
this->Modified();
}
}
// Evaluate Superquadric equation
double vtkSuperquadric::EvaluateFunction(double xyz[3])
{
double e = this->ThetaRoundness;
double n = this->PhiRoundness;
double p[3], s[3];
double val;
s[0] = this->Scale[0] * this->Size;
s[1] = this->Scale[1] * this->Size;
s[2] = this->Scale[2] * this->Size;
if(this->Toroidal) {
double tval;
double alpha;
alpha = (1.0 / this->Thickness);
s[0] /= (alpha + 1.0);
s[1] /= (alpha + 1.0);
s[2] /= (alpha + 1.0);
p[0] = (xyz[0] - this->Center[0]) / s[0];
p[1] = (xyz[1] - this->Center[1]) / s[1];
p[2] = (xyz[2] - this->Center[2]) / s[2];
tval = pow((pow(fabs(p[2]), 2.0/e) + pow(fabs(p[0]), 2.0/e)), e/2.0);
val = pow(fabs(tval - alpha), 2.0/n) + pow(fabs(p[1]), 2.0/n) - 1.0;
}
else { // Ellipsoidal
p[0] = (xyz[0] - this->Center[0]) / s[0];
p[1] = (xyz[1] - this->Center[1]) / s[1];
p[2] = (xyz[2] - this->Center[2]) / s[2];
val = pow((pow(fabs(p[2]), 2.0/e) + pow(fabs(p[0]), 2.0/e)), e/n) +
pow(fabs(p[1]),2.0/n) - 1.0;
}
if(val > MAX_FVAL){
val = MAX_FVAL;
}
else if(val < -MAX_FVAL){
val = -MAX_FVAL;
}
return val;
}
// Description
// Evaluate Superquadric function gradient.
void vtkSuperquadric::EvaluateGradient(double vtkNotUsed(xyz)[3], double g[3])
{
// bogus! lazy!
// if someone wants to figure these out, they are each the
// partial of x, then y, then z with respect to f as shown above.
// Careful for the fabs().
g[0] = g[1] = g[2] = 0.0;
}
void vtkSuperquadric::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Toroidal: " << (this->Toroidal ? "On\n" : "Off\n");
os << indent << "Size: " << this->Size << "\n";
os << indent << "Thickness: " << this->Thickness << "\n";
os << indent << "ThetaRoundness: " << this->ThetaRoundness << "\n";
os << indent << "PhiRoundness: " << this->PhiRoundness << "\n";
os << indent << "Center: ("
<< this->Center[0] << ", "
<< this->Center[1] << ", "
<< this->Center[2] << ")\n";
os << indent << "Scale: ("
<< this->Scale[0] << ", "
<< this->Scale[1] << ", "
<< this->Scale[2] << ")\n";
}
|