1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkTriangle.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkTriangle.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPlane.h"
#include "vtkPointData.h"
#include "vtkIncrementalPointLocator.h"
#include "vtkPoints.h"
#include "vtkPolygon.h"
#include "vtkQuadric.h"
vtkStandardNewMacro(vtkTriangle);
//----------------------------------------------------------------------------
// Construct the triangle with three points.
vtkTriangle::vtkTriangle()
{
this->Points->SetNumberOfPoints(3);
this->PointIds->SetNumberOfIds(3);
for (int i = 0; i < 3; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i,0);
}
this->Line = vtkLine::New();
}
//----------------------------------------------------------------------------
vtkTriangle::~vtkTriangle()
{
this->Line->Delete();
}
//----------------------------------------------------------------------------
// This function simply calls the static function:
// vtkTriangle::TriangleArea(double p1[3], double p2[3], double p3[3])
// with the appropriate parameters from the instantiated vtkTriangle.
double vtkTriangle::ComputeArea()
{
double p0[3];
double p1[3];
double p2[3];
this->GetPoints()->GetPoint(0, p0);
this->GetPoints()->GetPoint(1, p1);
this->GetPoints()->GetPoint(2, p2);
return vtkTriangle::TriangleArea(p0, p1, p2);
}
//----------------------------------------------------------------------------
// Create a new cell and copy this triangle's information into the cell.
// Returns a poiner to the new cell created.
int vtkTriangle::EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights)
{
int i, j;
double pt1[3], pt2[3], pt3[3], n[3], fabsn;
double rhs[2], c1[2], c2[2];
double det;
double maxComponent;
int idx=0, indices[2];
double dist2Point, dist2Line1, dist2Line2;
double *closest, closestPoint1[3], closestPoint2[3], cp[3];
subId = 0;
pcoords[2] = 0.0;
// Get normal for triangle, only the normal direction is needed, i.e. the
// normal need not be normalized (unit length)
//
this->Points->GetPoint(1, pt1);
this->Points->GetPoint(2, pt2);
this->Points->GetPoint(0, pt3);
vtkTriangle::ComputeNormalDirection(pt1, pt2, pt3, n);
// Project point to plane
//
vtkPlane::GeneralizedProjectPoint(x,pt1,n,cp);
// Construct matrices. Since we have over determined system, need to find
// which 2 out of 3 equations to use to develop equations. (Any 2 should
// work since we've projected point to plane.)
//
for (maxComponent=0.0, i=0; i<3; i++)
{
// trying to avoid an expensive call to fabs()
if (n[i] < 0)
{
fabsn = -n[i];
}
else
{
fabsn = n[i];
}
if (fabsn > maxComponent)
{
maxComponent = fabsn;
idx = i;
}
}
for (j=0, i=0; i<3; i++)
{
if ( i != idx )
{
indices[j++] = i;
}
}
for (i=0; i<2; i++)
{
rhs[i] = cp[indices[i]] - pt3[indices[i]];
c1[i] = pt1[indices[i]] - pt3[indices[i]];
c2[i] = pt2[indices[i]] - pt3[indices[i]];
}
if ( (det = vtkMath::Determinant2x2(c1,c2)) == 0.0 )
{
pcoords[0] = pcoords[1] = 0.0;
return -1;
}
pcoords[0] = vtkMath::Determinant2x2(rhs,c2) / det;
pcoords[1] = vtkMath::Determinant2x2(c1,rhs) / det;
// Okay, now find closest point to element
//
weights[0] = 1 - (pcoords[0] + pcoords[1]);
weights[1] = pcoords[0];
weights[2] = pcoords[1];
if ( weights[0] >= 0.0 && weights[0] <= 1.0 &&
weights[1] >= 0.0 && weights[1] <= 1.0 &&
weights[2] >= 0.0 && weights[2] <= 1.0 )
{
//projection distance
if (closestPoint)
{
dist2 = vtkMath::Distance2BetweenPoints(cp,x);
closestPoint[0] = cp[0];
closestPoint[1] = cp[1];
closestPoint[2] = cp[2];
}
return 1;
}
else
{
double t;
if (closestPoint)
{
if ( weights[1] < 0.0 && weights[2] < 0.0 )
{
dist2Point = vtkMath::Distance2BetweenPoints(x,pt3);
dist2Line1 = vtkLine::DistanceToLine(x,pt1,pt3,t,closestPoint1);
dist2Line2 = vtkLine::DistanceToLine(x,pt3,pt2,t,closestPoint2);
if (dist2Point < dist2Line1)
{
dist2 = dist2Point;
closest = pt3;
}
else
{
dist2 = dist2Line1;
closest = closestPoint1;
}
if (dist2Line2 < dist2)
{
dist2 = dist2Line2;
closest = closestPoint2;
}
for (i=0; i<3; i++)
{
closestPoint[i] = closest[i];
}
}
else if ( weights[2] < 0.0 && weights[0] < 0.0 )
{
dist2Point = vtkMath::Distance2BetweenPoints(x,pt1);
dist2Line1 = vtkLine::DistanceToLine(x,pt1,pt3,t,closestPoint1);
dist2Line2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint2);
if (dist2Point < dist2Line1)
{
dist2 = dist2Point;
closest = pt1;
}
else
{
dist2 = dist2Line1;
closest = closestPoint1;
}
if (dist2Line2 < dist2)
{
dist2 = dist2Line2;
closest = closestPoint2;
}
for (i=0; i<3; i++)
{
closestPoint[i] = closest[i];
}
}
else if ( weights[1] < 0.0 && weights[0] < 0.0 )
{
dist2Point = vtkMath::Distance2BetweenPoints(x,pt2);
dist2Line1 = vtkLine::DistanceToLine(x,pt2,pt3,t,closestPoint1);
dist2Line2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint2);
if (dist2Point < dist2Line1)
{
dist2 = dist2Point;
closest = pt2;
}
else
{
dist2 = dist2Line1;
closest = closestPoint1;
}
if (dist2Line2 < dist2)
{
dist2 = dist2Line2;
closest = closestPoint2;
}
for (i=0; i<3; i++)
{
closestPoint[i] = closest[i];
}
}
else if ( weights[0] < 0.0 )
{
dist2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint);
}
else if ( weights[1] < 0.0 )
{
dist2 = vtkLine::DistanceToLine(x,pt2,pt3,t,closestPoint);
}
else if ( weights[2] < 0.0 )
{
dist2 = vtkLine::DistanceToLine(x,pt1,pt3,t,closestPoint);
}
}
return 0;
}
}
//----------------------------------------------------------------------------
void vtkTriangle::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3],
double x[3], double *weights)
{
double u3;
double pt0[3], pt1[3], pt2[3];
int i;
this->Points->GetPoint(0, pt0);
this->Points->GetPoint(1, pt1);
this->Points->GetPoint(2, pt2);
u3 = 1.0 - pcoords[0] - pcoords[1];
for (i=0; i<3; i++)
{
x[i] = pt0[i]*u3 + pt1[i]*pcoords[0] + pt2[i]*pcoords[1];
}
weights[0] = u3;
weights[1] = pcoords[0];
weights[2] = pcoords[1];
}
//----------------------------------------------------------------------------
// Compute iso-parametric interpolation functions
//
void vtkTriangle::InterpolationFunctions(double pcoords[3], double sf[3])
{
sf[0] = 1. - pcoords[0] - pcoords[1];
sf[1] = pcoords[0];
sf[2] = pcoords[1];
}
//----------------------------------------------------------------------------
void vtkTriangle::InterpolationDerivs(double *, double derivs[6])
{
//r-derivatives
derivs[0] = -1;
derivs[1] = 1;
derivs[2] = 0;
//s-derivatives
derivs[3] = -1;
derivs[4] = 0;
derivs[5] = 1;
}
//----------------------------------------------------------------------------
int vtkTriangle::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
vtkIdList *pts)
{
double t1=pcoords[0]-pcoords[1];
double t2=0.5*(1.0-pcoords[0])-pcoords[1];
double t3=2.0*pcoords[0]+pcoords[1]-1.0;
pts->SetNumberOfIds(2);
// compare against three lines in parametric space that divide element
// into three pieces
if ( t1 >= 0.0 && t2 >= 0.0 )
{
pts->SetId(0,this->PointIds->GetId(0));
pts->SetId(1,this->PointIds->GetId(1));
}
else if ( t2 < 0.0 && t3 >= 0.0 )
{
pts->SetId(0,this->PointIds->GetId(1));
pts->SetId(1,this->PointIds->GetId(2));
}
else //( t1 < 0.0 && t3 < 0.0 )
{
pts->SetId(0,this->PointIds->GetId(2));
pts->SetId(1,this->PointIds->GetId(0));
}
if ( pcoords[0] < 0.0 || pcoords[1] < 0.0 ||
pcoords[0] > 1.0 || pcoords[1] > 1.0 ||
(1.0 - pcoords[0] - pcoords[1]) < 0.0 )
{
return 0;
}
else
{
return 1;
}
}
//----------------------------------------------------------------------------
//
// Marching triangles
//
typedef int EDGE_LIST;
typedef struct {
EDGE_LIST edges[3];
} LINE_CASES;
static LINE_CASES lineCases[] = {
{{-1, -1, -1}},
{{0, 2, -1}},
{{1, 0, -1}},
{{1, 2, -1}},
{{2, 1, -1}},
{{0, 1, -1}},
{{2, 0, -1}},
{{-1, -1, -1}}
};
static int edges[3][2] = { {0,1}, {1,2}, {2,0} };
//----------------------------------------------------------------------------
int *vtkTriangle::GetEdgeArray(int edgeId)
{
return edges[edgeId];
}
//----------------------------------------------------------------------------
void vtkTriangle::Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator,
vtkCellArray *verts,
vtkCellArray *lines,
vtkCellArray *vtkNotUsed(polys),
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId,
vtkCellData *outCd)
{
static int CASE_MASK[3] = {1,2,4};
LINE_CASES *lineCase;
EDGE_LIST *edge;
int i, j, index, *vert;
vtkIdType pts[2];
int e1, e2, newCellId;
double t, x1[3], x2[3], x[3], deltaScalar;
vtkIdType offset = verts->GetNumberOfCells();
// Build the case table
for ( i=0, index = 0; i < 3; i++)
{
if (cellScalars->GetComponent(i,0) >= value)
{
index |= CASE_MASK[i];
}
}
lineCase = lineCases + index;
edge = lineCase->edges;
for ( ; edge[0] > -1; edge += 2 )
{
for (i=0; i<2; i++) // insert line
{
vert = edges[edge[i]];
// calculate a preferred interpolation direction
deltaScalar = (cellScalars->GetComponent(vert[1],0)
- cellScalars->GetComponent(vert[0],0));
if (deltaScalar > 0)
{
e1 = vert[0]; e2 = vert[1];
}
else
{
e1 = vert[1]; e2 = vert[0];
deltaScalar = -deltaScalar;
}
// linear interpolation
if (deltaScalar == 0.0)
{
t = 0.0;
}
else
{
t = (value - cellScalars->GetComponent(e1,0)) / deltaScalar;
}
this->Points->GetPoint(e1, x1);
this->Points->GetPoint(e2, x2);
for (j=0; j<3; j++)
{
x[j] = x1[j] + t * (x2[j] - x1[j]);
}
if ( locator->InsertUniquePoint(x, pts[i]) )
{
if ( outPd )
{
vtkIdType p1 = this->PointIds->GetId(e1);
vtkIdType p2 = this->PointIds->GetId(e2);
outPd->InterpolateEdge(inPd,pts[i],p1,p2,t);
}
}
}
// check for degenerate line
if ( pts[0] != pts[1] )
{
newCellId = offset + lines->InsertNextCell(2,pts);
outCd->CopyData(inCd,cellId,newCellId);
}
}
}
//----------------------------------------------------------------------------
// Get the edge specified by edgeId (range 0 to 2) and return that edge's
// coordinates.
vtkCell *vtkTriangle::GetEdge(int edgeId)
{
int edgeIdPlus1 = (edgeId > 1 ? 0 : (edgeId+1) );
// load point id's
this->Line->PointIds->SetId(0,this->PointIds->GetId(edgeId));
this->Line->PointIds->SetId(1,this->PointIds->GetId(edgeIdPlus1));
// load coordinates
this->Line->Points->SetPoint(0,this->Points->GetPoint(edgeId));
this->Line->Points->SetPoint(1,this->Points->GetPoint(edgeIdPlus1));
return this->Line;
}
//----------------------------------------------------------------------------
// Plane intersection plus in/out test on triangle. The in/out test is
// performed using tol as the tolerance.
int vtkTriangle::IntersectWithLine(double p1[3], double p2[3], double tol,
double& t, double x[3], double pcoords[3],
int& subId)
{
double pt1[3], pt2[3], pt3[3], n[3];
double tol2 = tol*tol;
double closestPoint[3];
double dist2, weights[3];
subId = 0;
pcoords[2] = 0.0;
// Get normal for triangle
//
this->Points->GetPoint(1, pt1);
this->Points->GetPoint(2, pt2);
this->Points->GetPoint(0, pt3);
vtkTriangle::ComputeNormal (pt1, pt2, pt3, n);
if (n[0] != 0 || n[1] != 0 || n[2] != 0)
{
// Intersect plane of triangle with line
//
if ( ! vtkPlane::IntersectWithLine(p1,p2,n,pt1,t,x) )
{
pcoords[0] = pcoords[1] = 0.0;
return 0;
}
// Evaluate position
//
int inside;
if ( (inside = this->EvaluatePosition(x, closestPoint, subId, pcoords,
dist2, weights)) >= 0)
{
if ( dist2 <= tol2 )
{
return 1;
}
return inside;
}
}
// Normals are null, so the triangle is degenerated and
// we still need to check intersection between line and
// the longest edge.
double dist2Pt1Pt2 = vtkMath::Distance2BetweenPoints(pt1, pt2);
double dist2Pt2Pt3 = vtkMath::Distance2BetweenPoints(pt2, pt3);
double dist2Pt3Pt1 = vtkMath::Distance2BetweenPoints(pt3, pt1);
if (dist2Pt1Pt2 > dist2Pt2Pt3 && dist2Pt1Pt2 > dist2Pt3Pt1)
{
this->Line->Points->InsertPoint(0,pt1);
this->Line->Points->InsertPoint(1,pt2);
}
else if (dist2Pt2Pt3 > dist2Pt3Pt1 && dist2Pt2Pt3 > dist2Pt1Pt2)
{
this->Line->Points->InsertPoint(0,pt2);
this->Line->Points->InsertPoint(1,pt3);
}
else
{
this->Line->Points->InsertPoint(0,pt3);
this->Line->Points->InsertPoint(1,pt1);
}
if (this->Line->IntersectWithLine(p1,p2,tol,t,x,pcoords,subId))
{
// Compute r and s manually, using dot and norm.
double pt3Pt1[3];
double pt3Pt2[3];
double pt3X[3];
for (int i = 0; i < 3; i++)
{
pt3Pt1[i] = pt1[i] - pt3[i];
pt3Pt2[i] = pt2[i] - pt3[i];
pt3X[i] = x[i] - pt3[i];
}
pcoords[0] = vtkMath::Dot(pt3X, pt3Pt1) / dist2Pt3Pt1;
pcoords[1] = vtkMath::Dot(pt3X, pt3Pt2) / dist2Pt2Pt3;
return 1;
}
pcoords[0] = pcoords[1] = 0.0;
return 0;
}
//----------------------------------------------------------------------------
int vtkTriangle::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds,
vtkPoints *pts)
{
pts->Reset();
ptIds->Reset();
for ( int i=0; i < 3; i++ )
{
ptIds->InsertId(i,this->PointIds->GetId(i));
pts->InsertPoint(i,this->Points->GetPoint(i));
}
return 1;
}
//----------------------------------------------------------------------------
// Used a staged computation: first compute derivatives in local x'-y'
// coordinate system; then convert into x-y-z modelling system.
void vtkTriangle::Derivatives(int vtkNotUsed(subId), double vtkNotUsed(pcoords)[3],
double *values, int dim, double *derivs)
{
double v0[2], v1[2], v2[2], v[3], v10[3], v20[3], lenX;
double x0[3], x1[3], x2[3], n[3];
double *J[2], J0[2], J1[2];
double *JI[2], JI0[2], JI1[2];
double functionDerivs[6], sum[2], dBydx, dBydy;
int i, j;
// Project points of triangle into 2D system
this->Points->GetPoint(0, x0);
this->Points->GetPoint(1, x1);
this->Points->GetPoint(2, x2);
vtkTriangle::ComputeNormal (x0, x1, x2, n);
for (i=0; i < 3; i++)
{
v10[i] = x1[i] - x0[i];
v[i] = x2[i] - x0[i];
}
vtkMath::Cross(n,v10,v20); //creates local y' axis
if ( (lenX=vtkMath::Normalize(v10)) <= 0.0
|| vtkMath::Normalize(v20) <= 0.0 ) //degenerate
{
for ( j=0; j < dim; j++ )
{
for ( i=0; i < 3; i++ )
{
derivs[j*dim + i] = 0.0;
}
}
return;
}
v0[0] = v0[1] = 0.0; //convert points to 2D (i.e., local system)
v1[0] = lenX; v1[1] = 0.0;
v2[0] = vtkMath::Dot(v,v10);
v2[1] = vtkMath::Dot(v,v20);
// Compute interpolation function derivatives
vtkTriangle::InterpolationDerivs(NULL,functionDerivs);
// Compute Jacobian: Jacobian is constant for a triangle.
J[0] = J0; J[1] = J1;
JI[0] = JI0; JI[1] = JI1;
J[0][0] = v1[0] - v0[0];
J[1][0] = v2[0] - v0[0];
J[0][1] = v1[1] - v0[1];
J[1][1] = v2[1] - v0[1];
// Compute inverse Jacobian
vtkMath::InvertMatrix(J,JI,2);
// Loop over "dim" derivative values. For each set of values, compute
// derivatives in local system and then transform into modelling system.
// First compute derivatives in local x'-y' coordinate system
for ( j=0; j < dim; j++ )
{
sum[0] = sum[1] = 0.0;
for ( i=0; i < 3; i++) //loop over interp. function derivatives
{
sum[0] += functionDerivs[i] * values[dim*i + j];
sum[1] += functionDerivs[3 + i] * values[dim*i + j];
}
dBydx = sum[0]*JI[0][0] + sum[1]*JI[0][1];
dBydy = sum[0]*JI[1][0] + sum[1]*JI[1][1];
// Transform into global system (dot product with global axes)
derivs[3*j] = dBydx * v10[0] + dBydy * v20[0];
derivs[3*j + 1] = dBydx * v10[1] + dBydy * v20[1];
derivs[3*j + 2] = dBydx * v10[2] + dBydy * v20[2];
}
}
//----------------------------------------------------------------------------
// Compute the triangle normal from a points list, and a list of point ids
// that index into the points list.
void vtkTriangle::ComputeNormal(vtkPoints *p, int vtkNotUsed(numPts),
vtkIdType *pts, double n[3])
{
double v1[3], v2[3], v3[3];
p->GetPoint(pts[0],v1);
p->GetPoint(pts[1],v2);
p->GetPoint(pts[2],v3);
vtkTriangle::ComputeNormal(v1,v2,v3,n);
}
//----------------------------------------------------------------------------
// Compute the circumcenter (center[3]) and radius squared (method
// return value) of a triangle defined by the three points x1, x2, and
// x3. (Note that the coordinates are 2D. 3D points can be used but
// the z-component will be ignored.)
double vtkTriangle::Circumcircle(double x1[2], double x2[2], double x3[2],
double center[2])
{
double n12[2], n13[2], x12[2], x13[2];
double *A[2], rhs[2], sum, diff;
int i;
// calculate normals and intersection points of bisecting planes.
//
for (i=0; i<2; i++)
{
n12[i] = x2[i] - x1[i];
n13[i] = x3[i] - x1[i];
x12[i] = (x2[i] + x1[i])/2.0;
x13[i] = (x3[i] + x1[i])/2.0;
}
// Compute solutions to the intersection of two bisecting lines
// (2-eqns. in 2-unknowns).
//
// form system matrices
//
A[0] = n12;
A[1] = n13;
rhs[0] = vtkMath::Dot2D(n12,x12);
rhs[1] = vtkMath::Dot2D(n13,x13);
// Solve system of equations
//
if ( vtkMath::SolveLinearSystem(A,rhs,2) == 0 )
{
center[0] = center[1] = 0.0;
return VTK_DOUBLE_MAX;
}
else
{
center[0] = rhs[0]; center[1] = rhs[1];
}
//determine average value of radius squared
for (sum=0, i=0; i<2; i++)
{
diff = x1[i] - center[i];
sum += diff*diff;
diff = x2[i] - center[i];
sum += diff*diff;
diff = x3[i] - center[i];
sum += diff*diff;
}
if ( (sum /= 3.0) > VTK_DOUBLE_MAX )
{
return VTK_DOUBLE_MAX;
}
else
{
return sum;
}
}
//----------------------------------------------------------------------------
// Given a 2D point x[2], determine the barycentric coordinates of the point.
// Barycentric coordinates are a natural coordinate system for simplices that
// express a position as a linear combination of the vertices. For a
// triangle, there are three barycentric coordinates (because there are
// fourthree vertices), and the sum of the coordinates must equal 1. If a
// point x is inside a simplex, then all three coordinates will be strictly
// positive. If two coordinates are zero (so the third =1), then the
// point x is on a vertex. If one coordinates are zero, the point x is on an
// edge. In this method, you must specify the vertex coordinates x1->x3.
// Returns 0 if triangle is degenerate.
int vtkTriangle::BarycentricCoords(double x[2], double x1[2], double x2[2],
double x3[2], double bcoords[3])
{
double *A[3], p[3], a1[3], a2[3], a3[3];
int i;
// Homogenize the variables; load into arrays.
//
a1[0] = x1[0]; a1[1] = x2[0]; a1[2] = x3[0];
a2[0] = x1[1]; a2[1] = x2[1]; a2[2] = x3[1];
a3[0] = 1.0; a3[1] = 1.0; a3[2] = 1.0;
p[0] = x[0]; p[1] = x[1]; p[2] = 1.0;
// Now solve system of equations for barycentric coordinates
//
A[0] = a1;
A[1] = a2;
A[2] = a3;
if ( vtkMath::SolveLinearSystem(A,p,3) )
{
for (i=0; i<3; i++)
{
bcoords[i] = p[i];
}
return 1;
}
else
{
return 0;
}
}
//----------------------------------------------------------------------------
// Project triangle defined in 3D to 2D coordinates. Returns 0 if degenerate
// triangle; non-zero value otherwise. Input points are x1->x3; output 2D
// points are v1->v3.
int vtkTriangle::ProjectTo2D(double x1[3], double x2[3], double x3[3],
double v1[2], double v2[2], double v3[2])
{
double n[3], v21[3], v31[3], v[3], xLen;
// Get normal for triangle
vtkTriangle::ComputeNormal (x1, x2, x3, n);
for (int i=0; i < 3; i++)
{
v21[i] = x2[i] - x1[i];
v31[i] = x3[i] - x1[i];
}
if ( (xLen=vtkMath::Normalize(v21)) <= 0.0 )
{
return 0;
}
// The first point is at (0,0); the next at (xLen,0); compute the other
// point relative to the first two.
v1[0] = v1[1] = 0.0;
v2[0] = xLen; v2[1] = 0.0;
vtkMath::Cross(n,v21,v);
v3[0] = vtkMath::Dot(v31,v21);
v3[1] = vtkMath::Dot(v31,v);
return 1;
}
//----------------------------------------------------------------------------
// Support triangle clipping. Note that the table defines triangles (three ids
// at a time define a triangle, -1 ends the list). Numbers in the list >= 100
// correspond to already existing vertices; otherwise the numbers refer to edge
// ids.
typedef int TRIANGLE_EDGE_LIST;
typedef struct {
TRIANGLE_EDGE_LIST edges[7];
} TRIANGLE_CASES;
static TRIANGLE_CASES triangleCases[] = {
{{-1, -1, -1, -1, -1, -1, -1}}, // 0
{{0, 2, 100, -1, -1, -1, -1}}, // 1
{{1, 0, 101, -1, -1, -1, -1}}, // 2
{{1, 2, 100, 1, 100, 101, -1}}, // 3
{{2, 1, 102, -1, -1, -1, -1}}, // 4
{{0, 1, 102, 102, 100, 0, -1}}, // 5
{{0, 101, 2, 2, 101, 102, -1}}, // 6
{{100, 101, 102, -1, -1, -1, -1}} // 7
};
//----------------------------------------------------------------------------
// Clip this triangle using scalar value provided. Like contouring, except
// that it cuts the triangle to produce other triangles.
void vtkTriangle::Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *tris,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut)
{
static int CASE_MASK[3] = {1,2,4};
TRIANGLE_CASES *triangleCase;
TRIANGLE_EDGE_LIST *edge;
int i, j, index, *vert;
int e1, e2, newCellId;
vtkIdType pts[3];
int vertexId;
double t, x1[3], x2[3], x[3], deltaScalar;
// Build the case table
if ( insideOut )
{
for ( i=0, index = 0; i < 3; i++)
{
if (cellScalars->GetComponent(i,0) <= value)
{
index |= CASE_MASK[i];
}
}
}
else
{
for ( i=0, index = 0; i < 3; i++)
{
if (cellScalars->GetComponent(i,0) > value)
{
index |= CASE_MASK[i];
}
}
}
// Select the case based on the index and get the list of edges for this case
triangleCase = triangleCases + index;
edge = triangleCase->edges;
// generate each triangle
for ( ; edge[0] > -1; edge += 3 )
{
for (i=0; i<3; i++) // insert triangle
{
// vertex exists, and need not be interpolated
if (edge[i] >= 100)
{
vertexId = edge[i] - 100;
this->Points->GetPoint(vertexId, x);
if ( locator->InsertUniquePoint(x, pts[i]) )
{
outPd->CopyData(inPd,this->PointIds->GetId(vertexId),pts[i]);
}
}
else //new vertex, interpolate
{
vert = edges[edge[i]];
// calculate a preferred interpolation direction
deltaScalar = (cellScalars->GetComponent(vert[1],0) -
cellScalars->GetComponent(vert[0],0));
if (deltaScalar > 0)
{
e1 = vert[0]; e2 = vert[1];
}
else
{
e1 = vert[1]; e2 = vert[0];
deltaScalar = -deltaScalar;
}
// linear interpolation
if (deltaScalar == 0.0)
{
t = 0.0;
}
else
{
t = (value - cellScalars->GetComponent(e1,0)) / deltaScalar;
}
this->Points->GetPoint(e1, x1);
this->Points->GetPoint(e2, x2);
for (j=0; j<3; j++)
{
x[j] = x1[j] + t * (x2[j] - x1[j]);
}
if ( locator->InsertUniquePoint(x, pts[i]) )
{
vtkIdType p1 = this->PointIds->GetId(e1);
vtkIdType p2 = this->PointIds->GetId(e2);
outPd->InterpolateEdge(inPd,pts[i],p1,p2,t);
}
}
}
// check for degenerate tri's
if (pts[0] == pts[1] || pts[0] == pts[2] || pts[1] == pts[2])
{
continue;
}
newCellId = tris->InsertNextCell(3,pts);
outCd->CopyData(inCd,cellId,newCellId);
}
}
//----------------------------------------------------------------------------
// Given a point x, determine whether it is inside (within the
// tolerance squared, tol2) the triangle defined by the three
// coordinate values p1, p2, p3. Method is via comparing dot products.
// (Note: in current implementation the tolerance only works in the
// neighborhood of the three vertices of the triangle.
int vtkTriangle::PointInTriangle(double x[3], double p1[3], double p2[3],
double p3[3], double tol2)
{
double x1[3], x2[3], x3[3], v13[3], v21[3], v32[3];
double n1[3], n2[3], n3[3];
int i;
// Compute appropriate vectors
//
for (i=0; i<3; i++)
{
x1[i] = x[i] - p1[i];
x2[i] = x[i] - p2[i];
x3[i] = x[i] - p3[i];
v13[i] = p1[i] - p3[i];
v21[i] = p2[i] - p1[i];
v32[i] = p3[i] - p2[i];
}
// See whether intersection point is within tolerance of a vertex.
//
if ( (x1[0]*x1[0] + x1[1]*x1[1] + x1[2]*x1[2]) <= tol2 ||
(x2[0]*x2[0] + x2[1]*x2[1] + x2[2]*x2[2]) <= tol2 ||
(x3[0]*x3[0] + x3[1]*x3[1] + x3[2]*x3[2]) <= tol2 )
{
return 1;
}
// If not near a vertex, check whether point is inside of triangular face.
//
// Obtain normal off of triangular face
//
vtkMath::Cross (x1, v13, n1);
vtkMath::Cross (x2, v21, n2);
vtkMath::Cross (x3, v32, n3);
// Check whether ALL the three normals go in same direction
//
if ( (vtkMath::Dot(n1,n2) >= 0.0) &&
(vtkMath::Dot(n2,n3) >= 0.0) &&
(vtkMath::Dot(n1,n3) >= 0.0) )
{
return 1;
}
else
{
return 0;
}
}
//----------------------------------------------------------------------------
double vtkTriangle::GetParametricDistance(double pcoords[3])
{
int i;
double pDist, pDistMax=0.0;
double pc[3];
pc[0] = pcoords[0];
pc[1] = pcoords[1];
pc[2] = 1.0 - pcoords[0] - pcoords[1];
for (i=0; i<3; i++)
{
if ( pc[i] < 0.0 )
{
pDist = -pc[i];
}
else if ( pc[i] > 1.0 )
{
pDist = pc[i] - 1.0;
}
else //inside the cell in the parametric direction
{
pDist = 0.0;
}
if ( pDist > pDistMax )
{
pDistMax = pDist;
}
}
return pDistMax;
}
//----------------------------------------------------------------------------
void vtkTriangle::ComputeQuadric(double x1[3], double x2[3], double x3[3],
double quadric[4][4])
{
double crossX1X2[3], crossX2X3[3], crossX3X1[3];
double determinantABC;
double ABCx[3][3];
double n[4];
int i, j;
for (i = 0; i < 3; i++)
{
ABCx[0][i] = x1[i];
ABCx[1][i] = x2[i];
ABCx[2][i] = x3[i];
}
vtkMath::Cross(x1, x2, crossX1X2);
vtkMath::Cross(x2, x3, crossX2X3);
vtkMath::Cross(x3, x1, crossX3X1);
determinantABC = vtkMath::Determinant3x3(ABCx);
n[0] = crossX1X2[0] + crossX2X3[0] + crossX3X1[0];
n[1] = crossX1X2[1] + crossX2X3[1] + crossX3X1[1];
n[2] = crossX1X2[2] + crossX2X3[2] + crossX3X1[2];
n[3] = -determinantABC;
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
quadric[i][j] = n[i] * n[j];
}
}
}
//----------------------------------------------------------------------------
void vtkTriangle::ComputeQuadric(double x1[3], double x2[3], double x3[3],
vtkQuadric *quadric)
{
double quadricMatrix[4][4];
ComputeQuadric(x1, x2, x3, quadricMatrix);
quadric->SetCoefficients(quadricMatrix[0][0], quadricMatrix[1][1],
quadricMatrix[2][2], 2*quadricMatrix[0][1],
2*quadricMatrix[1][2], 2*quadricMatrix[0][2],
2*quadricMatrix[0][3], 2*quadricMatrix[1][3],
2*quadricMatrix[2][3], quadricMatrix[3][3]);
}
//----------------------------------------------------------------------------
static double vtkTriangleCellPCoords[9] =
{0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0};
double *vtkTriangle::GetParametricCoords()
{
return vtkTriangleCellPCoords;
}
//----------------------------------------------------------------------------
void vtkTriangle::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Line:\n";
this->Line->PrintSelf(os,indent.GetNextIndent());
}
|