File: XdmfHDFMPI.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 118,532 kB
  • ctags: 138,251
  • sloc: cpp: 1,443,749; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,127; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 471; makefile: 95; objc: 17
file content (256 lines) | stat: -rw-r--r-- 6,042 bytes parent folder | download | duplicates (18)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include <mpi.h>
#include <XdmfArray.h>
#include <XdmfHDF.h>


/// Simple memory buffer implementation that keeps track of it's stream pointer.
class Buffer {
private:
  std::size_t m_size;
  char* m_data;
  char* m_put;
  char* m_tell;

public:
  Buffer( std::size_t lsize ) :
    m_size( lsize ),
    m_data( new char[lsize] ),
    m_put( m_data ),
    m_tell( m_data )
  {}
  
  ~Buffer() {
    delete [] m_data;
  }

  /// put a single value into the buffer
  template< typename T > 
  void put( const T& t ) {
    std::size_t lsize = sizeof( T );
    memcpy( m_put, &t, lsize );
    m_put += lsize;
  }

  /// copy a contiguous block into the buffer
  void put( void* data, std::size_t lsize ) {
    memcpy( m_put, data, lsize );
    m_put += lsize;
  }

  /// Copy a single value into the buffer.
  template< typename T >
  T tell() {
    std::size_t tsize = sizeof( T );
    T tmp;
    memcpy( &tmp, m_tell, tsize );
    m_tell += tsize;
    return tmp;
  }

  /// copy a contiguous block of data from the buffer to an already allocated
  /// location
  void tell( void* out, std::size_t lsize ) {
    memcpy( out, m_tell, lsize );
    m_tell += lsize;
  }

  std::size_t size() const {
    return m_size;
  }

  char* pointer() {
    return m_data;
  }

  void reset() {
    m_put = m_data;
    m_tell = m_data;
  }
};

/// Callback implements parallel IO by communicating to rank 0 in MPI_COMM_WORLD.
class CommunicationCallback :
  public XdmfOpenCallback,
  public XdmfWriteCallback,
  public XdmfCloseCallback,
  public XdmfReadCallback
{
private:
  int mCommRank;
  int mCommSize;
public:

  CommunicationCallback() {
    MPI_Comm_size( MPI_COMM_WORLD, &mCommSize );
    MPI_Comm_rank( MPI_COMM_WORLD, &mCommRank );
  }

  XdmfInt32 DoOpen( 
    XdmfHeavyData* ds, 
    XdmfConstString name, 
    XdmfConstString access ) 
  {
  // If HDF5 is compiled with Parallel IO, we must use collective open
#ifndef H5_HAVE_PARALLEL
    if ( mCommRank == 0 ) {
      return ds->DoOpen( name, access );
    } else {
      return XDMF_SUCCESS;
    }
#else
    return ds->DoOpen( name, access );
#endif
  }

  XdmfInt32 DoClose( XdmfHeavyData* ds )
  {
#ifndef H5_HAVE_PARALLEL
    if ( mCommRank == 0 ) {
      return ds->DoClose();
    } else {
      return XDMF_SUCCESS;
    }
#else
    return ds->DoClose();
#endif
  }

  XdmfInt32 DoWrite( XdmfHeavyData* ds, XdmfArray* array )
  {
    MPI_Status stat;
    // this is a really bad implementation that assumes rank 0 has the same data
    // size as everyone else, but we're really just going for a simple
    // example here.  The real coalescing implementation will require a few more
    // classes to handle buffering the data cleanly and robustly.

    XdmfInt64 start[1], stride[1], count[1];
    XdmfInt32 slab_rank = ds->GetHyperSlab( start, stride, count );
    std::size_t slab_info_size = 
      sizeof( XdmfInt32 ) // slab rank
      + slab_rank * sizeof( XdmfInt64 ) * 3; // start, stride, and count
    Buffer buf( slab_info_size + array->GetCoreLength() );

    if ( mCommRank != 0 ) {
      // copy local data to the buffer for sending
      buf.put( slab_rank );
      for ( int i = 0; i < slab_rank; ++i ) {
        buf.put( start[i] );
        buf.put( stride[i] );
        buf.put( count[i] );
      }
      buf.put( array->GetDataPointer(), array->GetCoreLength() );
      MPI_Send( 
        buf.pointer(), 
        buf.size(), 
        MPI_BYTE, 
        0, 
        0,
        MPI_COMM_WORLD );
    } else {
      // first, it's easy to write my own data
      ds->DoWrite( array );

      int processes_received = 1; // I've written local data
      while ( processes_received < mCommSize ) {
        MPI_Recv(
          buf.pointer(),
          buf.size(),
          MPI_BYTE,
          MPI_ANY_SOURCE,
          0,
          MPI_COMM_WORLD,
          &stat );
        processes_received++;

        // pull the information from the buffer
        buf.reset();
        slab_rank = buf.tell< XdmfInt32 >();
        for( int i = 0; i < slab_rank; ++i ) {
          start[i] = buf.tell< XdmfInt64 >();
          stride[i] = buf.tell< XdmfInt64 >();
          count[i] = buf.tell< XdmfInt64 >();
        }
        ds->SelectHyperSlab( start, stride, count );
        XdmfArray* recv = new XdmfArray;
        recv->CopyShape( array );
        buf.tell( recv->GetDataPointer(), recv->GetCoreLength() );
        ds->DoWrite( recv );
        delete recv;
      }
    }
    
    return XDMF_SUCCESS;
  }

  XdmfArray* DoRead( XdmfHeavyData* ds, XdmfArray* array )
  {
    if ( mCommRank == 0 ) {
      return ds->DoRead( array );
    } else {
      return NULL;
    }
  }
};

char const * const kDatasetName = "FILE:TestFile.h5:/XdmfHDFMPI";

int main( int argc, char* argv[] ) {
  MPI_Init( &argc, &argv );
 
  int rank;
  MPI_Comm_rank( MPI_COMM_WORLD, &rank );

  XdmfHDF* H5 = new XdmfHDF();
  CommunicationCallback* cb = new CommunicationCallback;
  H5->setOpenCallback( cb );
  H5->setWriteCallback( cb );
  H5->setCloseCallback(cb );
  XdmfArray* MyData = new XdmfArray();

  MyData->SetNumberType( XDMF_FLOAT32_TYPE );
  MyData->SetNumberOfElements( 25 );
  MyData->Generate( rank * 25, rank*25 + 24 );

  H5->CopyType( MyData );
  XdmfInt64 dims[1], start[1], stride[1], count[1];
  dims[0] = 100;
  H5->SetShape( 1, dims );
  start[0] = rank * 25;
  stride[0] = 1;
  count[0] = 25;
  H5->SelectHyperSlab( start, stride, count );
  H5->Open( kDatasetName, "w" );
  H5->Write( MyData );
  H5->Close();
  
  bool failure = false;

  XdmfHDF* H5In = new XdmfHDF();
  H5In->setReadCallback( cb );
  H5In->setOpenCallback( cb );
  H5In->Open( kDatasetName, "r" );
  XdmfArray* result = H5In->Read();

  if ( result ) {
    for ( size_t i = 0; i < 100; ++i ) {
      float value = result->GetValueAsFloat32( i );
      std::cout << i << " " << value << std::endl;
      failure = ( value != i );
    }
  }

  delete H5;
  delete cb;
  delete MyData;
  delete H5In;
  delete result;

  MPI_Finalize();

  if ( failure ) {
    return -1;
  } else {
    return 0;
  }
};