1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkSMPThreadLocal.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkSMPThreadLocal - A Kaapi based thread local storage implementation.
// .SECTION Description
// A thread local object is one that maintains a copy of an object of the
// template type for each thread that processes data. vtkSMPThreadLocal
// creates storage for all threads but the actual objects are created
// the first time Local() is called. Note that some of the vtkSMPThreadLocal
// API is not thread safe. It can be safely used in a multi-threaded
// environment because Local() returns storage specific to a particular
// thread, which by default will be accessed sequentially. It is also
// thread-safe to iterate over vtkSMPThreadLocal as long as each thread
// creates its own iterator and does not change any of the thread local
// objects.
//
// A common design pattern in using a thread local storage object is to
// write/accumulate data to local object when executing in parallel and
// then having a sequential code block that iterates over the whole storage
// using the iterators to do the final accumulation.
//
// .SECTION Warning
// There is absolutely no guarantee to the order in which the local objects
// will be stored and hence the order in which they will be traversed when
// using iterators. You should not even assume that two vtkSMPThreadLocal
// populated in the same parallel section will be populated in the same
// order. For example, consider the following
// \verbatim
// vtkSMPThreadLocal<int> Foo;
// vtkSMPThreadLocal<int> Bar;
// class AFunctor
// {
// void Initialize() const
// {
// int& foo = Foo.Local();
// int& bar = Bar.Local();
// foo = random();
// bar = foo;
// }
//
// void operator()(vtkIdType, vtkIdType) const
// {}
// };
//
// AFunctor functor;
// vtkParalllelUtilities::For(0, 100000, functor);
//
// vtkSMPThreadLocal<int>::iterator itr1 = Foo.begin();
// vtkSMPThreadLocal<int>::iterator itr2 = Bar.begin();
// while (itr1 != Foo.end())
// {
// assert(*itr1 == *itr2);
// ++itr1; ++itr2;
// }
// \endverbatim
//
// It is possible and likely that the assert() will fail using the TBB
// backend. So if you need to store values related to each other and
// iterate over them together, use a struct or class to group them together
// and use a thread local of that class.
#ifndef vtkSMPThreadLocal_h
#define vtkSMPThreadLocal_h
#include "vtkAtomicTypes.h"
#include "vtkSystemIncludes.h"
#include <vector>
#include <kaapic.h>
VTKCOMMONCORE_EXPORT void vtkSMPToolsInitialize();
template <typename T>
class vtkSMPThreadLocal
{
typedef std::vector<T> TLS;
typedef typename TLS::iterator TLSIter;
public:
// Description:
// Default constructor. Creates a default exemplar.
vtkSMPThreadLocal() : Count(0)
{
this->Initialize();
}
// Description:
// Constructor that allows the specification of an exemplar object
// which is used when constructing objects when Local() is first called.
// Note that a copy of the exemplar is created using its copy constructor.
vtkSMPThreadLocal(const T& exemplar) : Count(0), Exemplar(exemplar)
{
this->Initialize();
}
// Description:
// Returns an object of type T that is local to the current thread.
// This needs to be called mainly within a threaded execution path.
// It will create a new object (local to the tread so each thread
// get their own when calling Local) which is a copy of exemplar as passed
// to the constructor (or a default object if no exemplar was provided)
// the first time it is called. After the first time, it will return
// the same object.
T& Local()
{
int tid = this->GetThreadID();
if (!this->Initialized[tid])
{
this->Internal[tid] = this->Exemplar;
this->Initialized[tid] = true;
++this->Count;
}
return this->Internal[tid];
}
// Description:
// Return the number of thread local objects that have been initialized
size_t size() const
{
return this->Count.load();
}
// Description:
// Subset of the standard iterator API.
// The most common design pattern is to use iterators in a sequential
// code block and to use only the thread local objects in parallel
// code blocks.
// It is thread safe to iterate over the thread local containers
// as long as each thread uses its own iterator and does not modify
// objects in the container.
class iterator
{
public:
iterator& operator++()
{
this->InitIter++;
this->Iter++;
// Make sure to skip uninitialized
// entries.
while(this->InitIter != this->EndIter)
{
if (*this->InitIter)
{
break;
}
this->InitIter++;
this->Iter++;
}
return *this;
}
iterator operator++(int)
{
iterator copy = *this;
++(*this);
return copy;
}
bool operator==(const iterator& other)
{
return this->Iter == other.Iter;
}
bool operator!=(const iterator& other)
{
return this->Iter != other.Iter;
}
T& operator*()
{
return *this->Iter;
}
T* operator->()
{
return &*this->Iter;
}
private:
friend class vtkSMPThreadLocal<T>;
std::vector<unsigned char>::iterator InitIter;
std::vector<unsigned char>::iterator EndIter;
TLSIter Iter;
};
// Description:
// Returns a new iterator pointing to the beginning of
// the local storage container. Thread safe.
iterator begin()
{
TLSIter iter = this->Internal.begin();
std::vector<unsigned char>::iterator iter2 =
this->Initialized.begin();
std::vector<unsigned char>::iterator enditer =
this->Initialized.end();
// fast forward to first initialized
// value
while(iter2 != enditer)
{
if (*iter2)
{
break;
}
iter2++;
iter++;
}
iterator retVal;
retVal.InitIter = iter2;
retVal.EndIter = enditer;
retVal.Iter = iter;
return retVal;
};
// Description:
// Returns a new iterator pointing to past the end of
// the local storage container. Thread safe.
iterator end()
{
iterator retVal;
retVal.InitIter = this->Initialized.end();
retVal.EndIter = this->Initialized.end();
retVal.Iter = this->Internal.end();
return retVal;
}
private:
TLS Internal;
std::vector<unsigned char> Initialized;
vtkAtomicIdType Count;
T Exemplar;
void Initialize()
{
vtkSMPToolsInitialize();
this->Internal.resize(this->GetNumberOfThreads());
this->Initialized.resize(this->GetNumberOfThreads());
std::fill(this->Initialized.begin(),
this->Initialized.end(),
false);
}
inline int GetNumberOfThreads()
{
return kaapi_getconcurrency();
}
inline int GetThreadID()
{
return kaapi_get_self_kid();
}
};
#endif
// VTK-HeaderTest-Exclude: vtkSMPThreadLocal.h
|