File: vtkDataArrayPrivate.txx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 118,880 kB
  • sloc: cpp: 1,442,792; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 103; objc: 17
file content (232 lines) | stat: -rw-r--r-- 7,017 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkDataArrayPrivate.txx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#ifndef vtkDataArrayPrivate_txx
#define vtkDataArrayPrivate_txx


#include "vtkTypeTraits.h"
#include <algorithm>
#include <cassert> // for assert()

namespace vtkDataArrayPrivate
{
#if defined(_MSC_VER) && ( _MSC_VER < 1900 )
namespace msvc
{
//----------------------------------------------------------------------------
// Those min and max functions replace std ones because their
// implementation used to generate very slow code with MSVC.
// See https://randomascii.wordpress.com/2013/11/24/stdmin-causing-three-times-slowdown-on-vc/
// The comparison expression in min/max are written so that if the "condition" is false,
// the "left" value is returned. This is consistent with STL's implementations
// and also handles the cases where the right value may be a NaN properly.
// All code using these methods should ensure that the "left" value is never
// NaN.
template <class ValueType>
ValueType max(const ValueType& left, const ValueType& right)
{
  return right > left ? right : left;
}

template <class ValueType>
ValueType min(const ValueType& left, const ValueType& right)
{
  return right <= left ? right : left;
}
}
#endif

namespace detail
{
#if defined(_MSC_VER) && ( _MSC_VER < 1900 )
using msvc::min;
using msvc::max;
#else
using std::min;
using std::max;
#endif
}

//----------------------------------------------------------------------------
template <class ValueType, int NumComps, int RangeSize>
struct ComputeScalarRange
{
  template<class InputIteratorType>
  bool operator()(InputIteratorType begin, InputIteratorType end,
                  double* ranges)
  {
    ValueType tempRange[RangeSize];
    for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
      {
      tempRange[j] = vtkTypeTraits<ValueType>::Max();
      tempRange[j+1] = vtkTypeTraits<ValueType>::Min();
      }

    //compute the range for each component of the data array at the same time
    for(InputIteratorType value = begin; value != end; value+=NumComps)
      {
      for(int i = 0, j = 0; i < NumComps; ++i, j+=2)
        {
        tempRange[j] = detail::min(tempRange[j], value[i]);
        tempRange[j+1] = detail::max(tempRange[j+1], value[i]);
        }
      }

    //convert the range to doubles
    for (int i = 0, j = 0; i < NumComps; ++i, j+=2)
      {
      ranges[j] = static_cast<double>(tempRange[j]);
      ranges[j+1] = static_cast<double>(tempRange[j+1]);
      }
    return true;
  }
};

//----------------------------------------------------------------------------
template <class ValueType, class InputIteratorType>
bool DoComputeScalarRange(InputIteratorType begin, InputIteratorType end,
                        const int numComp, double* ranges)
{
  //setup the initial ranges to be the max,min for double
  for (int i = 0, j = 0; i < numComp; ++i, j+=2)
    {
    ranges[j] =  vtkTypeTraits<double>::Max();
    ranges[j+1] = vtkTypeTraits<double>::Min();
    }

  //do this after we make sure range is max to min
  if (begin == end)
    {
    return false;
    }

  //verify that length of the array is divisible by the number of components
  //this will make sure we don't walk off the end
  assert((end-begin) % numComp == 0);

  //Special case for single value scalar range. This is done to help the
  //compiler detect it can perform loop optimizations.
  if (numComp == 1)
    {
    return ComputeScalarRange<ValueType,1,2>()(begin, end, ranges);
    }
  else if (numComp == 2)
    {
    return ComputeScalarRange<ValueType,2,4>()(begin, end, ranges);
    }
  else if (numComp == 3)
    {
    return ComputeScalarRange<ValueType,3,6>()(begin, end, ranges);
    }
  else if (numComp == 4)
    {
    return ComputeScalarRange<ValueType,4,8>()(begin, end, ranges);
    }
  else if (numComp == 5)
    {
    return ComputeScalarRange<ValueType,5,10>()(begin, end, ranges);
    }
  else if (numComp == 6)
    {
    return ComputeScalarRange<ValueType,6,12>()(begin, end, ranges);
    }
  else if (numComp == 7)
    {
    return ComputeScalarRange<ValueType,7,14>()(begin, end, ranges);
    }
  else if (numComp == 8)
    {
    return ComputeScalarRange<ValueType,8,16>()(begin, end, ranges);
    }
  else if (numComp == 9)
    {
    return ComputeScalarRange<ValueType,9,18>()(begin, end, ranges);
    }
  else
    {
    //initialize the temp range storage to min/max pairs
    ValueType* tempRange = new ValueType[numComp*2];
    for (int i = 0, j = 0; i < numComp; ++i, j+=2)
      {
      tempRange[j] = vtkTypeTraits<ValueType>::Max();
      tempRange[j+1] = vtkTypeTraits<ValueType>::Min();
      }

    //compute the range for each component of the data array at the same time
    for (InputIteratorType value = begin; value != end; value+=numComp)
      {
      for(int i = 0, j = 0; i < numComp; ++i, j+=2)
        {
        tempRange[j] = detail::min(tempRange[j], value[i]);
        tempRange[j+1] = detail::max(tempRange[j+1], value[i]);
        }
      }

    //convert the range to doubles
    for (int i = 0, j = 0; i < numComp; ++i, j+=2)
      {
      ranges[j] = static_cast<double>(tempRange[j]);
      ranges[j+1] = static_cast<double>(tempRange[j+1]);
      }

    //cleanup temp range storage
    delete[] tempRange;

    return true;
    }
}

//----------------------------------------------------------------------------
template <class ValueType, class InputIteratorType>
bool DoComputeVectorRange(InputIteratorType begin, InputIteratorType end,
                          int numComp, double range[2])
{
  range[0] = vtkTypeTraits<double>::Max();
  range[1] = vtkTypeTraits<double>::Min();

  //do this after we make sure range is max to min
  if (begin == end)
    {
    return false;
    }

  //verify that length of the array is divisible by the number of components
  //this will make sure we don't walk off the end
  assert((end-begin) % numComp == 0);

  //iterate over all the tuples
  for (InputIteratorType value = begin; value != end; value+=numComp)
    {
    double squaredSum = 0.0;
    for (int i = 0; i < numComp; ++i)
      {
      const double t = static_cast<double>(value[i]);
      squaredSum += t * t;
      }
    range[0] = detail::min(range[0], squaredSum);
    range[1] = detail::max(range[1], squaredSum);
    }

  //now that we have computed the smallest and largest value, take the
  //square root of that value.
  range[0] = sqrt(range[0]);
  range[1] = sqrt(range[1]);

  return true;
}

}
#endif
// VTK-HeaderTest-Exclude: vtkDataArrayPrivate.txx