1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkOrderedTriangulator.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkOrderedTriangulator.h"
#include "vtkCellArray.h"
#include "vtkEdgeTable.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkTetra.h"
#include "vtkUnstructuredGrid.h"
#include "vtkHeap.h"
#include "vtkDataArray.h"
#include "vtkDoubleArray.h"
#include "vtkIncrementalPointLocator.h"
#include "vtkPointData.h"
#include "vtkCellData.h"
#include <list>
#include <vector>
#include <stack>
#include <map>
#include <cassert>
vtkStandardNewMacro(vtkOrderedTriangulator);
#ifdef _WIN32_WCE
# ifndef __PLACEMENT_NEW_INLINE
# define __PLACEMENT_NEW_INLINE
inline void *__cdecl operator new(size_t, void *_P) { return (_P); }
inline void __cdecl operator delete(void *, void *) { return; }
# endif
#else
# include <new>
#endif
// Old HP compiler does not support operator delete that is called
// when a constructor called by operator new throws.
#if defined(__HP_aCC) && (__HP_aCC < 061200)
# define VTK_NO_PLACEMENT_DELETE
#endif
// SGI compiler does not support placement delete that is called when
// a constructor called by placement new throws.
#if defined(__sgi) && !defined(__GNUC__)
# define VTK_NO_PLACEMENT_DELETE
#endif
// Classes are used to represent points, faces, and tetras-------------------
// This data structure consists of points and tetras, with the face used
// temporarily as a place holder during triangulation.
struct OTPoint;
struct OTFace;
struct OTTetra;
//---Class represents a point (and related typedefs)--------------------------
// Note that the points has two sets of coordinates: the first the actual
// position X[3] and the second the coordinate used for performing
// triangulation (usually a parametric coordinate P[3]).
struct OTPoint
{
OTPoint() : Type(Inside), Id(0), SortId(0), SortId2(0), OriginalId(0),
InsertionId(0)
{
this->X[0] = this->X[1] = this->X[2] = 0.0;
this->P[0] = this->P[1] = this->P[2] = 0.0;
}
enum PointClassification
{Inside=0,Outside=1,Boundary=2,Added=3,NoInsert=4};
PointClassification Type;
double X[3]; //Actual position of point
double P[3]; //Triangulation coordinate (typically parametric coordinate)
//Id of originating point
vtkIdType Id;
//Id used to sort points prior to triangulation
vtkIdType SortId;
//Second id used to sort in triangulation
//This can be used in situations where one id is not enough
//(for example, when the id is related to an edge which
// is described by two points)
vtkIdType SortId2;
//Id based on order seen in InsertPoint()
vtkIdType OriginalId;
//Id after sorting the points (i.e. order inserted into mesh)
vtkIdType InsertionId;
};
struct PointListType : public std::vector<OTPoint>
{
PointListType() : std::vector<OTPoint>() {}
OTPoint* GetPointer(int ptId)
{return &( *(this->begin()+ptId) ); }
};
typedef PointListType::iterator PointListIterator;
//---Class represents a face (and related typedefs)--------------------------
struct OTFace //used during tetra construction
{
void *operator new(size_t size, vtkHeap *heap)
{return heap->AllocateMemory(size);}
#if !defined(VTK_NO_PLACEMENT_DELETE)
void operator delete(void*,vtkHeap*) {}
#endif
OTPoint *Points[3]; //the three points of the face
OTTetra *Neighbor;
double Normal[3];
double N2;
void ComputePseudoNormal()
{
double v20[3], v10[3];
v20[0] = this->Points[2]->P[0] - this->Points[0]->P[0];
v20[1] = this->Points[2]->P[1] - this->Points[0]->P[1];
v20[2] = this->Points[2]->P[2] - this->Points[0]->P[2];
v10[0] = this->Points[1]->P[0] - this->Points[0]->P[0];
v10[1] = this->Points[1]->P[1] - this->Points[0]->P[1];
v10[2] = this->Points[1]->P[2] - this->Points[0]->P[2];
vtkMath::Cross(v10,v20,this->Normal);
this->N2 = vtkMath::Dot(this->Normal,this->Normal);
}
int IsValidCavityFace(double X[3],double tol2)
{
double vp[3], d;
vp[0] = X[0] - this->Points[0]->P[0];
vp[1] = X[1] - this->Points[0]->P[1];
vp[2] = X[2] - this->Points[0]->P[2];
d = vtkMath::Dot(vp,this->Normal);
return ( (d > 0.0L && (d*d) > (tol2*this->N2)) ? 1 : 0 );
}
};
typedef std::vector<OTFace*> FaceListType;
typedef std::vector<OTFace*>::iterator FaceListIterator;
//---Class represents a tetrahedron (and related typedefs)--------------------
typedef std::list<OTTetra*> TetraListType;
typedef std::list<OTTetra*>::iterator TetraListIterator;
struct TetraStackType : public std::stack<OTTetra*>
{
TetraStackType() : std::stack<OTTetra*>() {}
void clear() {while (!this->empty()) this->pop();}
};
typedef std::vector<OTTetra*> TetraQueueType;
typedef std::vector<OTTetra*>::iterator TetraQueueIterator;
struct OTTetra
{
void *operator new(size_t size, vtkHeap *heap)
{return heap->AllocateMemory(size);}
#if !defined(VTK_NO_PLACEMENT_DELETE)
void operator delete(void*,vtkHeap*) {}
#endif
OTTetra() : Radius2(0.0L), CurrentPointId(-1), Type(OutsideCavity)
{
this->Center[0] = this->Center[1] = this->Center[2] = 0.0L;
this->Points[0] = this->Points[1] = this->Points[2] = this->Points[3] = 0;
this->Neighbors[0] = this->Neighbors[1] =
this->Neighbors[2] = this->Neighbors[3] = 0;
this->DeleteMe = 0;
}
// Center and radius squared of circumsphere of this tetra
double Radius2;
double Center[3];
// Note: there is a direct correlation between the points and the faces
// i.e., the ordering of the points and face neighbors.
OTTetra *Neighbors[4]; //the four face neighbors
OTPoint *Points[4]; //the four points
// The following are used during point insertion
int CurrentPointId; //indicated current point being inserted
enum TetraClassification
{Inside=0,Outside=1,All=2,InCavity=3,OutsideCavity=4,Exterior=5};
TetraClassification Type;
// Supporting triangulation operators
void GetFacePoints(int i, OTFace *face);
int InCircumSphere(double x[3]);
TetraClassification DetermineType(); //inside, outside
int DeleteMe;
};
//---Class represents the Delaunay triangulation using points and tetras.
// Additional support for the Delaunay triangulation process.
struct vtkOTMesh
{
vtkOTMesh(vtkHeap *heap) :
NumberOfTetrasClassifiedInside(0), NumberOfTemplates(0)
{
this->EdgeTable = vtkEdgeTable::New();
this->Heap = heap;
}
~vtkOTMesh()
{
this->EdgeTable->Delete();
}
PointListType Points; //Points in the mesh
TetraListType Tetras; //Tetrahedra in the mesh
FaceListType CavityFaces; //Faces forming an insertion cavity
TetraQueueType VisitedTetras; //Those tetra already visited during insertion
TetraStackType TetraStack; //Stack of tetra visited during point insertion
TetraQueueType DegenerateQueue; //Tetra involved in degenerate triangulation
vtkEdgeTable *EdgeTable; //Edges used to create triangulation of cavity
double Tolerance2; //Used to control error
vtkHeap *Heap; //Many allocations occur in efficient heap
int NumberOfTetrasClassifiedInside;
int NumberOfTemplates;
TetraListIterator CurrentTetra;
void Reset()
{
this->Points.clear();
this->Tetras.clear();
this->CavityFaces.clear();
this->VisitedTetras.clear();
this->TetraStack.clear();
this->DegenerateQueue.clear();
this->EdgeTable->Reset();
}
OTTetra *CreateTetra(OTPoint *p, OTFace *face);
OTTetra *WalkToTetra(OTTetra *t,double x[3],int depth,double bc[4]);
int CreateInsertionCavity(OTPoint* p, OTTetra *tetra, double bc[4]);
int ClassifyTetras();
void DumpInsertionCavity(double x[3]);
};
//---Classes and typedefs used to support triangulation templates.
// Triangulation templates are used instead of Delaunay triangulation
// because they are so much faster. Because there are so many possible
// triangulations/templates possible, triangulation templates are
// computed on the fly and then cached.
//
// Two lists are kept. The first is a list of lists of templates for
// each cell type. The second is a list of templates for each cell.
//
// A specific template. The number of tetras and the tetra connectivity.
struct OTTemplate
{
vtkIdType NumberOfTetras;
vtkIdType *Tetras;
OTTemplate(vtkIdType numberOfTetras, vtkHeap *heap)
{
this->NumberOfTetras = numberOfTetras;
this->Tetras = static_cast<vtkIdType*>(
heap->AllocateMemory(sizeof(vtkIdType)*numberOfTetras*4) );
}
void *operator new(size_t size, vtkHeap *heap)
{return heap->AllocateMemory(size);}
#if !defined(VTK_NO_PLACEMENT_DELETE)
void operator delete(void*,vtkHeap*) {}
#endif
};
// Typedefs for a list of templates for a particular cell. Key is the
// template index.
typedef std::map<TemplateIDType,OTTemplate*> TemplateList;
typedef std::map<TemplateIDType,OTTemplate*>::iterator TemplateListIterator;
//
// Typedefs for a list of lists of templates keyed on cell type
struct vtkOTTemplates : public std::map<int,TemplateList*> {};
typedef std::map<int,TemplateList*>::iterator TemplatesIterator;
//------------------------------------------------------------------------
vtkOrderedTriangulator::vtkOrderedTriangulator()
{
// In place news (using allocators) are done here
this->Heap = vtkHeap::New();
this->Heap->SetBlockSize(500000);
this->Mesh = new vtkOTMesh(this->Heap);
this->NumberOfPoints = 0;
this->PreSorted = 0;
this->UseTwoSortIds = 0;
this->UseTemplates = 0;
this->NumberOfCellPoints = 0;
this->NumberOfCellEdges = 0;
this->Templates = new vtkOTTemplates;
this->TemplateHeap = vtkHeap::New();
this->TemplateHeap->SetBlockSize(250000);
}
//------------------------------------------------------------------------
vtkOrderedTriangulator::~vtkOrderedTriangulator()
{
delete this->Mesh;
this->Heap->Delete();
TemplatesIterator titer;
for (titer=this->Templates->begin(); titer != this->Templates->end(); ++titer)
{
delete (*titer).second;
}
delete this->Templates;
this->TemplateHeap->Delete();
}
//------------------------------------------------------------------------
void vtkOrderedTriangulator::InitTriangulation(double xmin, double xmax,
double ymin, double ymax,
double zmin, double zmax,
int numPts)
{
double bounds[6];
bounds[0] = xmin;
bounds[1] = xmax;
bounds[2] = ymin;
bounds[3] = ymax;
bounds[4] = zmin;
bounds[5] = zmax;
this->InitTriangulation(bounds,numPts);
// The templates remain valid and are reused.
}
//------------------------------------------------------------------------
void vtkOrderedTriangulator::InitTriangulation(double bounds[6], int numPts)
{
this->Heap->Reset();
this->Mesh->Reset();
this->NumberOfPoints = 0;
this->MaximumNumberOfPoints = numPts;
this->Mesh->Points.resize(numPts+6);
for (int i=0; i<6; i++)
{
this->Bounds[i] = bounds[i];
}
}
//------------------------------------------------------------------------
// Create an initial bounding Delaunay triangulation consisting of four
// tetras arranged in an octahedron.
void vtkOrderedTriangulator::Initialize()
{
double length;
double center[3];
double radius2;
// Set up the internal data structures. Space for six extra points
// is allocated for the bounding triangulation.
int numPts = this->MaximumNumberOfPoints;
double *bounds = this->Bounds;
// Create the initial Delaunay triangulation which is a
// bounding octahedron: 6 points & 4 tetra.
center[0] = (bounds[0]+bounds[1])/2.0;
center[1] = (bounds[2]+bounds[3])/2.0;
center[2] = (bounds[4]+bounds[5])/2.0;
length = 2.0 * sqrt( (radius2 = (bounds[1]-bounds[0])*(bounds[1]-bounds[0]) +
(bounds[3]-bounds[2])*(bounds[3]-bounds[2]) +
(bounds[5]-bounds[4])*(bounds[5]-bounds[4])) );
radius2 /= 2.0;
this->Mesh->Tolerance2 = length*length*1.0e-10;
// Define the points (-x,+x,-y,+y,-z,+z). Theses added points are
// used to create a bounding octahedron.
this->Mesh->Points[numPts].P[0] = center[0] - length;
this->Mesh->Points[numPts].P[1] = center[1];
this->Mesh->Points[numPts].P[2] = center[2];
this->Mesh->Points[numPts].Id = numPts;
this->Mesh->Points[numPts].InsertionId = numPts;
this->Mesh->Points[numPts].Type = OTPoint::Added;
this->Mesh->Points[numPts+1].P[0] = center[0] + length;
this->Mesh->Points[numPts+1].P[1] = center[1];
this->Mesh->Points[numPts+1].P[2] = center[2];
this->Mesh->Points[numPts+1].Id = numPts + 1;
this->Mesh->Points[numPts+1].InsertionId = numPts + 1;
this->Mesh->Points[numPts+1].Type = OTPoint::Added;
this->Mesh->Points[numPts+2].P[0] = center[0];
this->Mesh->Points[numPts+2].P[1] = center[1] - length;
this->Mesh->Points[numPts+2].P[2] = center[2];
this->Mesh->Points[numPts+2].Id = numPts + 2;
this->Mesh->Points[numPts+2].InsertionId = numPts + 2;
this->Mesh->Points[numPts+2].Type = OTPoint::Added;
this->Mesh->Points[numPts+3].P[0] = center[0];
this->Mesh->Points[numPts+3].P[1] = center[1] + length;
this->Mesh->Points[numPts+3].P[2] = center[2];
this->Mesh->Points[numPts+3].Id = numPts + 3;
this->Mesh->Points[numPts+3].InsertionId = numPts + 3;
this->Mesh->Points[numPts+3].Type = OTPoint::Added;
this->Mesh->Points[numPts+4].P[0] = center[0];
this->Mesh->Points[numPts+4].P[1] = center[1];
this->Mesh->Points[numPts+4].P[2] = center[2] - length;
this->Mesh->Points[numPts+4].Id = numPts + 4;
this->Mesh->Points[numPts+4].InsertionId = numPts + 4;
this->Mesh->Points[numPts+4].Type = OTPoint::Added;
this->Mesh->Points[numPts+5].P[0] = center[0];
this->Mesh->Points[numPts+5].P[1] = center[1];
this->Mesh->Points[numPts+5].P[2] = center[2] + length;
this->Mesh->Points[numPts+5].Id = numPts + 5;
this->Mesh->Points[numPts+5].InsertionId = numPts + 5;
this->Mesh->Points[numPts+5].Type = OTPoint::Added;
// Create bounding tetras (there are four) as well as the associated faces
// They all share the same center and radius
OTTetra *tetras[4];
for (int i=0; i<4; ++i)
{
tetras[i] = new(this->Heap) OTTetra();
this->Mesh->Tetras.push_front(tetras[i]);
tetras[i]->Center[0] = center[0];
tetras[i]->Center[1] = center[1];
tetras[i]->Center[2] = center[2];
tetras[i]->Radius2 = radius2;
}
//Okay now set up the points and neighbors in the tetras
tetras[0]->Points[0] = this->Mesh->Points.GetPointer(numPts + 0);
tetras[0]->Points[1] = this->Mesh->Points.GetPointer(numPts + 2);
tetras[0]->Points[2] = this->Mesh->Points.GetPointer(numPts + 4);
tetras[0]->Points[3] = this->Mesh->Points.GetPointer(numPts + 5);
tetras[0]->Neighbors[0] = 0; //outside
tetras[0]->Neighbors[1] = tetras[1];
tetras[0]->Neighbors[2] = tetras[3];
tetras[0]->Neighbors[3] = 0;
tetras[1]->Points[0] = this->Mesh->Points.GetPointer(numPts + 2);
tetras[1]->Points[1] = this->Mesh->Points.GetPointer(numPts + 1);
tetras[1]->Points[2] = this->Mesh->Points.GetPointer(numPts + 4);
tetras[1]->Points[3] = this->Mesh->Points.GetPointer(numPts + 5);
tetras[1]->Neighbors[0] = 0;
tetras[1]->Neighbors[1] = tetras[2];
tetras[1]->Neighbors[2] = tetras[0];
tetras[1]->Neighbors[3] = 0;
tetras[2]->Points[0] = this->Mesh->Points.GetPointer(numPts + 1);
tetras[2]->Points[1] = this->Mesh->Points.GetPointer(numPts + 3);
tetras[2]->Points[2] = this->Mesh->Points.GetPointer(numPts + 4);
tetras[2]->Points[3] = this->Mesh->Points.GetPointer(numPts + 5);
tetras[2]->Neighbors[0] = 0;
tetras[2]->Neighbors[1] = tetras[3];
tetras[2]->Neighbors[2] = tetras[1];
tetras[2]->Neighbors[3] = 0;
tetras[3]->Points[0] = this->Mesh->Points.GetPointer(numPts + 3);
tetras[3]->Points[1] = this->Mesh->Points.GetPointer(numPts + 0);
tetras[3]->Points[2] = this->Mesh->Points.GetPointer(numPts + 4);
tetras[3]->Points[3] = this->Mesh->Points.GetPointer(numPts + 5);
tetras[3]->Neighbors[0] = 0;
tetras[3]->Neighbors[1] = tetras[0];
tetras[3]->Neighbors[2] = tetras[2];
tetras[3]->Neighbors[3] = 0;
}
//------------------------------------------------------------------------
// Add a point to the list of points to be triangulated.
vtkIdType vtkOrderedTriangulator::InsertPoint(vtkIdType id, double x[3],
double p[3], int type)
{
vtkIdType idx = this->NumberOfPoints++;
if ( idx >= this->MaximumNumberOfPoints )
{
vtkErrorMacro(<< "Trying to insert more points than specified max="
<< this->MaximumNumberOfPoints << " idx=" << idx);
return idx;
}
this->Mesh->Points[idx].Id = id;
this->Mesh->Points[idx].SortId = id;
this->Mesh->Points[idx].SortId2 = -1;
this->Mesh->Points[idx].OriginalId = idx;
this->Mesh->Points[idx].InsertionId = -1; //dummy value until inserted
this->Mesh->Points[idx].X[0] = x[0];
this->Mesh->Points[idx].X[1] = x[1];
this->Mesh->Points[idx].X[2] = x[2];
this->Mesh->Points[idx].P[0] = p[0];
this->Mesh->Points[idx].P[1] = p[1];
this->Mesh->Points[idx].P[2] = p[2];
this->Mesh->Points[idx].Type =
static_cast<OTPoint::PointClassification>(type);
return idx;
}
//------------------------------------------------------------------------
// Add a point to the list of points to be triangulated.
vtkIdType vtkOrderedTriangulator::InsertPoint(vtkIdType id, vtkIdType sortid,
double x[3], double p[3],
int type)
{
vtkIdType idx = this->NumberOfPoints++;
if ( idx >= this->MaximumNumberOfPoints )
{
vtkErrorMacro(<< "Trying to insert more points than specified");
return idx;
}
this->Mesh->Points[idx].Id = id;
this->Mesh->Points[idx].SortId = sortid;
this->Mesh->Points[idx].SortId2 = -1;
this->Mesh->Points[idx].OriginalId = idx;
this->Mesh->Points[idx].InsertionId = -1; //dummy value until inserted
this->Mesh->Points[idx].X[0] = x[0];
this->Mesh->Points[idx].X[1] = x[1];
this->Mesh->Points[idx].X[2] = x[2];
this->Mesh->Points[idx].P[0] = p[0];
this->Mesh->Points[idx].P[1] = p[1];
this->Mesh->Points[idx].P[2] = p[2];
this->Mesh->Points[idx].Type =
static_cast<OTPoint::PointClassification>(type);
return idx;
}
//------------------------------------------------------------------------
// Add a point to the list of points to be triangulated.
vtkIdType vtkOrderedTriangulator::InsertPoint(vtkIdType id, vtkIdType sortid,
vtkIdType sortid2,
double x[3], double p[3],
int type)
{
vtkIdType idx = this->NumberOfPoints++;
if ( idx >= this->MaximumNumberOfPoints )
{
vtkErrorMacro(<< "Trying to insert more points than specified");
return idx;
}
this->Mesh->Points[idx].Id = id;
this->Mesh->Points[idx].SortId = sortid;
this->Mesh->Points[idx].SortId2 = sortid2;
this->Mesh->Points[idx].OriginalId = idx;
this->Mesh->Points[idx].InsertionId = -1; //dummy value until inserted
this->Mesh->Points[idx].X[0] = x[0];
this->Mesh->Points[idx].X[1] = x[1];
this->Mesh->Points[idx].X[2] = x[2];
this->Mesh->Points[idx].P[0] = p[0];
this->Mesh->Points[idx].P[1] = p[1];
this->Mesh->Points[idx].P[2] = p[2];
this->Mesh->Points[idx].Type =
static_cast<OTPoint::PointClassification>(type);
return idx;
}
//------------------------------------------------------------------------
// Used when an already inserted point must have its classification changed
// (e.g., an intersection point is very near another point).
void vtkOrderedTriangulator::UpdatePointType(vtkIdType internalId, int type)
{
assert("pre: valid_range" && internalId>=0 &&
internalId<this->NumberOfPoints);
this->Mesh->Points[internalId].Type =
static_cast<OTPoint::PointClassification>(type);
}
//------------------------------------------------------------------------
double *vtkOrderedTriangulator::GetPointPosition(vtkIdType internalId)
{
assert("pre: valid_range" && internalId>=0 &&
internalId<this->NumberOfPoints);
return this->Mesh->Points[internalId].P;
}
//------------------------------------------------------------------------
double *vtkOrderedTriangulator::GetPointLocation(vtkIdType internalId)
{
assert("pre: valid_range" && internalId>=0 &&
internalId<this->NumberOfPoints);
return this->Mesh->Points[internalId].X;
}
//------------------------------------------------------------------------
vtkIdType vtkOrderedTriangulator::GetPointId(vtkIdType internalId)
{
assert("pre: valid_range" && internalId>=0 &&
internalId<this->NumberOfPoints);
return this->Mesh->Points[internalId].Id;
}
//------------------------------------------------------------------------
// For a particular tetra and given a face id, return the three points
// defining the face.
void OTTetra::GetFacePoints(int i, OTFace *face)
{
// The order is carefully chosen to produce a tetrahedron
// that is not inside out; i.e., the ordering produces a positive
// Jacobian (computed from first three points points to fourth).
switch (i)
{
case 0:
face->Points[0] = this->Points[0];
face->Points[1] = this->Points[3];
face->Points[2] = this->Points[1];
break;
case 1:
face->Points[0] = this->Points[1];
face->Points[1] = this->Points[3];
face->Points[2] = this->Points[2];
break;
case 2:
face->Points[0] = this->Points[0];
face->Points[1] = this->Points[2];
face->Points[2] = this->Points[3];
break;
case 3:
face->Points[0] = this->Points[0];
face->Points[1] = this->Points[1];
face->Points[2] = this->Points[2];
break;
}
face->ComputePseudoNormal();
}
//------------------------------------------------------------------------
// Routines used to sort the points based on id.
extern "C" {
#ifdef _WIN32_WCE
static int __cdecl vtkSortOnIds(const void *val1, const void *val2)
#else
static int vtkSortOnIds(const void *val1, const void *val2)
#endif
{
if (((OTPoint *)val1)->SortId < ((OTPoint *)val2)->SortId)
{
return (-1);
}
else if (((OTPoint *)val1)->SortId > ((OTPoint *)val2)->SortId)
{
return (1);
}
else
{
return (0);
}
}
}
extern "C" {
#ifdef _WIN32_WCE
static int __cdecl vtkSortOnTwoIds(const void *val1, const void *val2)
#else
static int vtkSortOnTwoIds(const void *val1, const void *val2)
#endif
{
if (((OTPoint *)val1)->SortId2 < ((OTPoint *)val2)->SortId2)
{
return (-1);
}
else if (((OTPoint *)val1)->SortId2 > ((OTPoint *)val2)->SortId2)
{
return (1);
}
if (((OTPoint *)val1)->SortId < ((OTPoint *)val2)->SortId)
{
return (-1);
}
else if (((OTPoint *)val1)->SortId > ((OTPoint *)val2)->SortId)
{
return (1);
}
else
{
return (0);
}
}
}
//------------------------------------------------------------------------
// See whether point is in sphere of tetrahedron.
int OTTetra::InCircumSphere(double x[3])
{
double dist2;
// check if inside/outside circumsphere
dist2 = (x[0] - this->Center[0]) * (x[0] - this->Center[0]) +
(x[1] - this->Center[1]) * (x[1] - this->Center[1]) +
(x[2] - this->Center[2]) * (x[2] - this->Center[2]);
return (dist2 < (0.999999L * this->Radius2) ? 1 : 0);
}
//------------------------------------------------------------------------
// Determine the classification of a tetra based on point types.
inline OTTetra::TetraClassification OTTetra::DetermineType()
{
if ( (this->Points[0]->Type == OTPoint::Inside ||
this->Points[0]->Type == OTPoint::Boundary ) &&
(this->Points[1]->Type == OTPoint::Inside ||
this->Points[1]->Type == OTPoint::Boundary ) &&
(this->Points[2]->Type == OTPoint::Inside ||
this->Points[2]->Type == OTPoint::Boundary ) &&
(this->Points[3]->Type == OTPoint::Inside ||
this->Points[3]->Type == OTPoint::Boundary ) )
{
this->Type = OTTetra::Inside;
return OTTetra::Inside;
}
else if ( (this->Points[0]->Type == OTPoint::Outside ||
this->Points[0]->Type == OTPoint::Boundary ) &&
(this->Points[1]->Type == OTPoint::Outside ||
this->Points[1]->Type == OTPoint::Boundary ) &&
(this->Points[2]->Type == OTPoint::Outside ||
this->Points[2]->Type == OTPoint::Boundary ) &&
(this->Points[3]->Type == OTPoint::Outside ||
this->Points[3]->Type == OTPoint::Boundary ) )
{
this->Type = OTTetra::Outside;
return OTTetra::Outside;
}
else
{
this->Type = OTTetra::Exterior;
return OTTetra::Exterior;
}
}
//------------------------------------------------------------------------
// Determine whether the point is used by a specified tetra.
inline static int IsAPoint(OTTetra *t, vtkIdType id)
{
if ( id == t->Points[0]->InsertionId || id == t->Points[1]->InsertionId ||
id == t->Points[2]->InsertionId || id == t->Points[3]->InsertionId )
{
return 1;
}
else
{
return 0;
}
}
//------------------------------------------------------------------------
// Given two tetra face neighbors, assign the neighbor pointers to each tetra.
static void AssignNeighbors(OTTetra* t1, OTTetra* t2)
{
static int CASE_MASK[4] = {1,2,4,8};
int i, index;
for (i=0, index=0; i<4; ++i)
{
if (IsAPoint(t2,t1->Points[i]->InsertionId) )
{
index |= CASE_MASK[i];
}
}
switch (index)
{
case 11:
t1->Neighbors[0] = t2;
break;
case 14:
t1->Neighbors[1] = t2;
break;
case 13:
t1->Neighbors[2] = t2;
break;
case 7:
t1->Neighbors[3] = t2;
break;
default:
vtkGenericWarningMacro(<<"Really bad");
}
for (i=0, index=0; i<4; ++i)
{
if (IsAPoint(t1,t2->Points[i]->InsertionId) )
{
index |= CASE_MASK[i];
}
}
switch (index)
{
case 11:
t2->Neighbors[0] = t1;
break;
case 14:
t2->Neighbors[1] = t1;
break;
case 13:
t2->Neighbors[2] = t1;
break;
case 7:
t2->Neighbors[3] = t1;
break;
default:
vtkGenericWarningMacro(<<"Really bad");
}
}
//------------------------------------------------------------------------
// Instantiate and initialize a tetra.
OTTetra *vtkOTMesh::CreateTetra(OTPoint *p, OTFace *face)
{
OTTetra *tetra = new(this->Heap) OTTetra;
this->Tetras.push_front(tetra);
tetra->Radius2 = vtkTetra::Circumsphere(p->P,
face->Points[0]->P,
face->Points[1]->P,
face->Points[2]->P,
tetra->Center);
// the order is carefully chosen to produce a tetrahedron
// that is not inside out; i.e., the ordering produces a positive
// jacobian (normal computed from first three points points to fourth).
tetra->Points[0] = face->Points[0];
tetra->Points[1] = face->Points[1];
tetra->Points[2] = face->Points[2];
tetra->Points[3] = p;
if ( face->Neighbor )
{
AssignNeighbors(tetra,face->Neighbor);
}
return tetra;
}
//------------------------------------------------------------------------
// We start with a point that is inside a tetrahedron. We find face
// neighbors of the tetrahedron that also contain the point. The
// process continues recursively until no more tetrahedron are found.
// Faces that lie between a tetrahedron that is in the cavity and one
// that is not form the cavity boundary, these are kept track of in
// a list. Eventually the point and boundary faces form new tetrahedra.
int vtkOTMesh::CreateInsertionCavity(OTPoint* p, OTTetra *initialTet,
double [4])
{
// Prepare to insert deleted tetras and cavity faces
//
this->CavityFaces.clear(); //cavity face boundary
this->VisitedTetras.clear(); //tetras involved in creating cavity
this->TetraStack.clear(); //queue of tetras being processed
this->DegenerateQueue.clear(); //queue of tetras that have degenerate faces
this->TetraStack.push(initialTet);
initialTet->Type = OTTetra::InCavity; //the seed of the cavity
initialTet->CurrentPointId = p->InsertionId; //mark visited
this->VisitedTetras.push_back(initialTet);
// Process queue of tetras until exhausted
//
int i, valid;
int somethingNotValid=0;
OTTetra *nei, *tetra;
TetraQueueIterator t;
for ( int numCycles=0; !this->TetraStack.empty(); numCycles++)
{
tetra = this->TetraStack.top();
this->TetraStack.pop();
//for each face, see whether the neighbors are in the cavity
for (valid=1, i=0; i<4 && valid; ++i)
{
nei = tetra->Neighbors[i];
// If a mesh boundary face, the face is added to the
// list of insertion cavity faces
if ( nei == 0 )
{
OTFace *face = new(this->Heap) OTFace;
tetra->GetFacePoints(i,face);
face->Neighbor = 0;
this->CavityFaces.push_back(face);
valid = face->IsValidCavityFace(p->P,this->Tolerance2);
}
// Neighbor tetra has not been visited, check for possible face boundary
else if ( nei->CurrentPointId != p->InsertionId )
{
this->VisitedTetras.push_back(nei);
nei->CurrentPointId = p->InsertionId; //mark visited
if ( nei->InCircumSphere(p->P) )
{
nei->Type = OTTetra::InCavity;
this->TetraStack.push(nei);
}
else //a cavity boundary
{
nei->Type = OTTetra::OutsideCavity;
OTFace *face = new(this->Heap) OTFace;
tetra->GetFacePoints(i,face);
face->Neighbor = nei;
this->CavityFaces.push_back(face);
valid = face->IsValidCavityFace(p->P,this->Tolerance2);
}
}//if a not-visited face neighbor
// Visited before, add this face as a boundary
else if ( nei->Type == OTTetra::OutsideCavity )
{
OTFace *face = new(this->Heap) OTFace;
tetra->GetFacePoints(i,face);
face->Neighbor = nei;
this->CavityFaces.push_back(face);
valid = face->IsValidCavityFace(p->P,this->Tolerance2);
}
}//for each of the four tetra faces
//check for validity
if ( !valid ) //broke out due to invalid face
{
somethingNotValid++;
//add this tetra to queue
this->DegenerateQueue.push_back(tetra);
//mark all current tetras unvisited
for (t = this->VisitedTetras.begin();
t != this->VisitedTetras.end(); ++t)
{
(*t)->CurrentPointId = -1;
}
//mark degenerate tetras visited and outside cavity
TetraQueueIterator titer;
for ( titer=this->DegenerateQueue.begin();
titer != this->DegenerateQueue.end(); ++titer)
{
(*titer)->CurrentPointId = p->InsertionId;
(*titer)->Type = OTTetra::OutsideCavity;
}
//reinitialize queue
this->CavityFaces.clear(); //cavity face boundary
this->VisitedTetras.clear(); //tetras visited during cavity creation
this->TetraStack.clear(); //reprocess
this->TetraStack.push(initialTet);
initialTet->CurrentPointId = p->InsertionId;
initialTet->Type = OTTetra::InCavity;
this->VisitedTetras.push_back(initialTet);
}
if ( numCycles > 1000 ) return 0;
}//while queue not empty
// Make final pass and delete tetras inside the cavity
for (t = this->VisitedTetras.begin(); t != this->VisitedTetras.end(); ++t)
{
tetra = *t;
if ( tetra->CurrentPointId == p->InsertionId &&
tetra->Type == OTTetra::InCavity )
{
tetra->DeleteMe = 1;
}
}
TetraListIterator it;
for (it = this->Tetras.begin(); it != this->Tetras.end(); )
{
if ((*it)->DeleteMe)
{
it = this->Tetras.erase(it);
}
else
{
++it;
}
}
#if 0
//please leave this for debugging purposes
if ( somethingNotValid )
{
this->DumpInsertionCavity(p->P);
// exit(1);
}
#endif
return 1;
}
//------------------------------------------------------------------------
// Returns the number of tetras classified inside; a side effect is that
// all tetra are classified.
int vtkOTMesh::ClassifyTetras()
{
TetraListIterator t;
vtkIdType numInsideTetras=0;
// loop over all tetras getting the ones with the classification requested
for (t=this->Tetras.begin(); t != this->Tetras.end(); ++t)
{
if ( (*t)->DetermineType() == OTTetra::Inside )
{
numInsideTetras++;
}
}//for all tetras
return numInsideTetras;
}
//------------------------------------------------------------------------
// Used to debug (writes a VTK file representing the current insertion cavity).
void vtkOTMesh::DumpInsertionCavity(double x[3])
{
OTFace *face;
FaceListIterator fptr;
cout << "# vtk DataFile Version 3.0\n";
cout << "ordered triangulator output\n";
cout << "ASCII\n";
cout << "DATASET POLYDATA\n";
//write out points
int numFaces = static_cast<int>(this->CavityFaces.size());
cout << "POINTS " << 3*numFaces+1 << " double\n";
for (fptr=this->CavityFaces.begin();
fptr != this->CavityFaces.end(); ++fptr)
{
face = *fptr;
cout << face->Points[0]->P[0] << " "
<< face->Points[0]->P[1] << " "
<< face->Points[0]->P[2] << " "
<< face->Points[1]->P[0] << " "
<< face->Points[1]->P[1] << " "
<< face->Points[1]->P[2] << " "
<< face->Points[2]->P[0] << " "
<< face->Points[2]->P[1] << " "
<< face->Points[2]->P[2] << "\n";
}
//write out point insertion vertex
cout << x[0] << " " << x[1] << " " << x[2] << "\n\n";
cout << "VERTICES 1 2 \n";
cout << "1 " << 3*numFaces << "\n\n";
//write out triangles
cout << "POLYGONS " << numFaces << " " <<4*numFaces << "\n";
int idx=0;
for (fptr=this->CavityFaces.begin();
fptr != this->CavityFaces.end(); ++fptr, idx+=3)
{
cout << 3 << " " << idx << " " << idx+1 << " " << idx+2 << "\n";
}
}
//------------------------------------------------------------------------
// Walk to the tetra tha contains this point. Walking is done by moving
// in the direction of the most negative barycentric coordinate (i.e.,
// into the face neighbor).
OTTetra*
vtkOTMesh::WalkToTetra(OTTetra *tetra, double x[3], int depth, double bc[4])
{
int neg = 0;
int j, numNeg;
double negValue;
// prevent aimless wandering and death by recursion
if ( depth > 200 )
{
return 0;
}
vtkTetra::BarycentricCoords(x, tetra->Points[0]->P, tetra->Points[1]->P,
tetra->Points[2]->P, tetra->Points[3]->P, bc);
// find the most negative face
for ( negValue=VTK_DOUBLE_MAX, numNeg=j=0; j<4; j++ )
{
if ( bc[j] < -0.000001 ) //if close enough that's okay
{
numNeg++;
if ( bc[j] < negValue )
{
negValue = bc[j];
neg = j;
}
}
}
// if no negatives, then inside this tetra
if ( numNeg <= 0 )
{
return tetra;
}
// okay, march towards the most negative direction
switch (neg)
{
case 0:
tetra = tetra->Neighbors[1];
break;
case 1:
tetra = tetra->Neighbors[2];
break;
case 2:
tetra = tetra->Neighbors[0];
break;
case 3:
tetra = tetra->Neighbors[3];
break;
}
if ( tetra )
{
return this->WalkToTetra(tetra, x, ++depth, bc);
}
else
{
return 0;
}
}
//------------------------------------------------------------------------
// Use an ordered insertion process in combination with a consistent
// degenerate resolution process to generate a unique Delaunay triangulation.
void vtkOrderedTriangulator::Triangulate()
{
OTPoint *p;
int i;
vtkIdType ptId;
// Sort the points according to id. The last six points are left
// where they are (at the end of the list).
if ( ! this->PreSorted )
{
if (this->UseTwoSortIds)
{
qsort(this->Mesh->Points.GetPointer(0), this->NumberOfPoints,
sizeof(OTPoint), vtkSortOnTwoIds);
}
else
{
qsort(this->Mesh->Points.GetPointer(0), this->NumberOfPoints,
sizeof(OTPoint), vtkSortOnIds);
}
}
// Prepare the data structures (e.g., mesh) for an ordererd triangulation.
this->Initialize();
// Insert each point into the triangulation. Assign internal ids
// as we progress.
for (ptId=0, p=this->Mesh->Points.GetPointer(0);
ptId < this->NumberOfPoints; ++p, ++ptId)
{
if ( p->Type == OTPoint::NoInsert )
{
continue; //skip this point
}
p->InsertionId = ptId;
// Walk to a tetrahedron (start with first one on list)
double bc[4];
OTTetra *tetra =
this->Mesh->WalkToTetra(*(this->Mesh->Tetras.begin()),p->P,0,bc);
if ( tetra == 0 || !this->Mesh->CreateInsertionCavity(p, tetra, bc) )
{
vtkDebugMacro(<<"Point not in tetrahedron");
continue;
}
// For each face on the boundary of the cavity, create a new
// tetrahedron with the face and point. We've also got to set
// up tetrahedron face neighbors, so we'll use an edge table
// to keep track of the tetrahedron that generated the face as
// a result of sweeping an edge.
vtkIdType v1, v2;
this->Mesh->EdgeTable->InitEdgeInsertion(this->MaximumNumberOfPoints+6,2);
this->Mesh->TetraStack.clear();
FaceListIterator fptr;
void *tptr;
OTTetra *neiTetra;
OTFace *face;
for (fptr=this->Mesh->CavityFaces.begin();
fptr != this->Mesh->CavityFaces.end(); ++fptr)
{
face = *fptr;
//create a tetra (it's added to the list of tetras as a side effect)
tetra = this->Mesh->CreateTetra(p,face);
for (i=0; i<3; ++i)
{
v1 = face->Points[i%3]->InsertionId;
v2 = face->Points[(i+1)%3]->InsertionId;
this->Mesh->EdgeTable->IsEdge(v1,v2,tptr);
if ( ! tptr )
{
this->Mesh->EdgeTable->InsertEdge(v1,v2,tetra);
}
else
{
neiTetra = static_cast<OTTetra*>(tptr);
AssignNeighbors(tetra, neiTetra);
}
}//for three edges
}//for each face on the insertion cavity
}//for all points to be inserted
// Final classification
this->Mesh->NumberOfTetrasClassifiedInside = this->Mesh->ClassifyTetras();
}
//------------------------------------------------------------------------
// Perform triangulation using templates (when possible).
void vtkOrderedTriangulator::TemplateTriangulate(int cellType,
int numPts, int numEdges)
{
this->CellType = cellType;
if ( ! this->UseTemplates || cellType != VTK_HEXAHEDRON)
{
this->Triangulate();
return;
}
this->NumberOfCellPoints = numPts;
this->NumberOfCellEdges = numEdges;
// Sort the points according to id.
if ( ! this->PreSorted )
{
if (this->UseTwoSortIds)
{
qsort(this->Mesh->Points.GetPointer(0), this->NumberOfPoints,
sizeof(OTPoint), vtkSortOnTwoIds);
}
else
{
qsort(this->Mesh->Points.GetPointer(0), this->NumberOfPoints,
sizeof(OTPoint), vtkSortOnIds);
}
}
if ( ! this->TemplateTriangulation() )
{//template triangulation didn't work, triangulate it and add to template cache
int preSorted = this->PreSorted; //prevents resorting
this->PreSorted = 1;
this->Triangulate();
this->AddTemplate();
this->PreSorted = preSorted;
}
}
//------------------------------------------------------------------------
// Add the tetras classified as specified to an unstructured grid.
vtkIdType vtkOrderedTriangulator::GetTetras(int classification,
vtkUnstructuredGrid *ugrid)
{
// Create the points
//
int i;
vtkIdType numTetras=0;
PointListIterator p;
vtkPoints *points = vtkPoints::New();
points->SetNumberOfPoints(this->NumberOfPoints);
for ( i=0, p=this->Mesh->Points.begin(); i<this->NumberOfPoints; ++i, ++p)
{
points->SetPoint(p->InsertionId,p->X);
}
ugrid->SetPoints(points);
points->Delete();
ugrid->Allocate(1000);
TetraListIterator t;
OTTetra *tetra;
// loop over all tetras getting the ones with the classification requested
vtkIdType pts[4];
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
if ( tetra->Type == classification || classification == OTTetra::All)
{
numTetras++;
pts[0] = tetra->Points[0]->Id;
pts[1] = tetra->Points[1]->Id;
pts[2] = tetra->Points[2]->Id;
pts[3] = tetra->Points[3]->Id;
ugrid->InsertNextCell(VTK_TETRA,4,pts);
}
}//for all tetras
return numTetras;
}
//------------------------------------------------------------------------
// Add the tetras classified as specified to an unstructured grid
vtkIdType vtkOrderedTriangulator::AddTetras(int classification,
vtkCellArray *outConnectivity)
{
TetraListIterator t;
OTTetra *tetra;
vtkIdType numTetras=0;
// loop over all tetras getting the ones with the classification requested
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
if ( tetra->Type == classification || classification == OTTetra::All)
{
numTetras++;
outConnectivity->InsertNextCell(4);
outConnectivity->InsertCellPoint(tetra->Points[0]->Id);
outConnectivity->InsertCellPoint(tetra->Points[1]->Id);
outConnectivity->InsertCellPoint(tetra->Points[2]->Id);
outConnectivity->InsertCellPoint(tetra->Points[3]->Id);
}
}//for all tetras
return numTetras;
}
//-----------------------------------------------------------------------------
// Assuming that all the inserted points come from a cell `cellId' to
// triangulate, get the tetrahedra in outConnectivity, the points in locator
// and copy point data and cell data. Return the number of added tetras.
// \pre locator_exists: locator!=0
// \pre outConnectivity: outConnectivity!=0
// \pre inPD_exists: inPD!=0
// \pre outPD_exists: outPD!=0
// \pre inCD_exists: inCD!=0
// \pre outCD_exists: outCD!=0
vtkIdType vtkOrderedTriangulator::AddTetras(int classification,
vtkIncrementalPointLocator *locator,
vtkCellArray *outConnectivity,
vtkPointData *inPD,
vtkPointData *outPD,
vtkCellData *inCD,
vtkIdType cellId,
vtkCellData *outCD)
{
assert("pre: locator_exists" && locator!=0);
assert("pre: outConnectivity" && outConnectivity!=0);
assert("inPD_exists" && inPD!=0);
assert("pre: outPD_exists" && outPD!=0);
assert("inCD_exists" && inCD!=0);
assert("pre: outCD_exists" && outCD!=0);
TetraListIterator t;
OTTetra *tetra;
vtkIdType result=0;
// loop over all tetras getting the ones with the classification requested
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
if ( tetra->Type == classification || classification == OTTetra::All)
{
// Insert the points
vtkIdType pts[4];
int i=0;
while(i<4)
{
if(locator->InsertUniquePoint(tetra->Points[i]->X,pts[i]))
{
outPD->CopyData(inPD,tetra->Points[i]->Id,pts[i]);
}
++i;
}
// Insert the connectivity
result++;
vtkIdType newCellId = outConnectivity->InsertNextCell(4,pts);
outCD->CopyData(inCD,cellId,newCellId);
}
}//for all tetras
return result;
}
//------------------------------------------------------------------------
// Initialize tetra traversal. Used in conjunction with GetNextTetra().
void vtkOrderedTriangulator::InitTetraTraversal()
{
this->Mesh->CurrentTetra = this->Mesh->Tetras.begin();
}
//------------------------------------------------------------------------
// Retrieve a single tetra. Used in conjunction with InitTetraTraversal().
// Returns 0 when the list is exhausted.
int vtkOrderedTriangulator::GetNextTetra(int classification, vtkTetra *tet,
vtkDataArray *cellScalars,
vtkDoubleArray *tetScalars)
{
// Find the next tetra with the right classification
while ( this->Mesh->CurrentTetra != this->Mesh->Tetras.end() &&
(*this->Mesh->CurrentTetra)->Type != classification &&
(*this->Mesh->CurrentTetra)->Type != OTTetra::All )
{
++this->Mesh->CurrentTetra;
}
if ( this->Mesh->CurrentTetra != this->Mesh->Tetras.end() )
{
OTTetra *tetra = *(this->Mesh->CurrentTetra);
for (int i=0; i<4; i++)
{
tet->PointIds->SetId(i,tetra->Points[i]->Id);
tet->Points->SetPoint(i,tetra->Points[i]->X);
tetScalars->SetTuple(i,
cellScalars->GetTuple(
tetra->Points[i]->OriginalId));
}
++this->Mesh->CurrentTetra;
return 1;
}
else
{
return 0;
}
}
//------------------------------------------------------------------------
// Add the tetras classified as specified to a list of point ids and
// point coordinates.
vtkIdType vtkOrderedTriangulator::AddTetras(int classification,
vtkIdList *ptIds,
vtkPoints *pts)
{
TetraListIterator t;
OTTetra *tetra;
vtkIdType numTetras=0;
int i;
// loop over all tetras getting the ones with the classification requested
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
if ( tetra->Type == classification || classification == OTTetra::All)
{
numTetras++;
for (i=0; i<4; i++)
{
ptIds->InsertNextId(tetra->Points[i]->Id);
pts->InsertNextPoint(tetra->Points[i]->X);
}
}
}//for all tetras
return numTetras;
}
//------------------------------------------------------------------------
// Add the tetras classified as specified to an unstructured grid
vtkIdType vtkOrderedTriangulator::AddTetras(int classification,
vtkUnstructuredGrid *ugrid)
{
vtkIdType numTetras=0;
TetraListIterator t;
OTTetra *tetra;
// loop over all tetras getting the ones with the classification requested
vtkIdType pts[4];
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
if ( tetra->Type == classification || classification == OTTetra::All)
{
numTetras++;
pts[0] = tetra->Points[0]->Id;
pts[1] = tetra->Points[1]->Id;
pts[2] = tetra->Points[2]->Id;
pts[3] = tetra->Points[3]->Id;
ugrid->InsertNextCell(VTK_TETRA,4,pts);
}
}//for all tetras
return numTetras;
}
//------------------------------------------------------------------------
// Add the tetras classified as specified to a call array (connectivity list)
vtkIdType vtkOrderedTriangulator::AddTriangles(vtkCellArray *tris)
{
vtkIdType numTris=0;
int i;
// Loop over all tetras examining each unvisited face. Faces whose
// points are all classified "boundary" are added to the list of
// faces.
TetraListIterator t;
OTTetra *tetra;
OTFace *face = new(this->Heap) OTFace;
// loop over all tetras getting the faces classified on the boundary
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
tetra->CurrentPointId = VTK_INT_MAX; //mark visited
for (i=0; i<4; i++)
{
if ( tetra->Neighbors[i] &&
tetra->Neighbors[i]->CurrentPointId != VTK_INT_MAX &&
tetra->Type != tetra->Neighbors[i]->Type )
{//face not yet visited
tetra->GetFacePoints(i,face);
numTris++;
tris->InsertNextCell(3);
tris->InsertCellPoint(face->Points[0]->Id);
tris->InsertCellPoint(face->Points[1]->Id);
tris->InsertCellPoint(face->Points[2]->Id);
}
}
}//for all tetras
return numTris;
}
//------------------------------------------------------------------------
// Add faces classified on the boundary to a cell array (connectivity list)
vtkIdType vtkOrderedTriangulator::AddTriangles(vtkIdType id, vtkCellArray *tris)
{
vtkIdType numTris=0;
int i;
// Loop over all tetras examining each unvisited face. Faces whose
// points are all classified "boundary" are added to the list of
// faces.
TetraListIterator t;
OTTetra *tetra;
OTFace *face = new(this->Heap) OTFace;
// loop over all tetras getting the faces classified on the boundary
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
tetra = *t;
tetra->CurrentPointId = VTK_INT_MAX; //mark visited
for (i=0; i<4; i++)
{
if ( tetra->Neighbors[i] &&
tetra->Neighbors[i]->CurrentPointId != VTK_INT_MAX &&
tetra->Type != tetra->Neighbors[i]->Type )
{//face not yet visited
tetra->GetFacePoints(i,face);
if ( face->Points[0]->Id == id || face->Points[1]->Id == id ||
face->Points[2]->Id == id )
{
numTris++;
tris->InsertNextCell(3);
tris->InsertCellPoint(face->Points[0]->Id);
tris->InsertCellPoint(face->Points[1]->Id);
tris->InsertCellPoint(face->Points[2]->Id);
}
}
}
}//for all tetras
return numTris;
}
//---The following code supports templates----------------------------------
// Rather than predefining templates for the many possible triangulations, the
// ordered triangulator is used to generate the template which is then cached
// for later use. The key is that templates are uniquely characterized by a
// template id---a number representing a permutation of the sort of the
// original points.
//---Define template id type. Note: type must be 32 bits--------------------
// Currently the templates are set up for a maximum of eight point ids per
// cell maximum (this is due to the use of the vtkHexahedron). Any point can
// be exchanged with any of the other ids during the sort operation, so each
// exchange is represented with four bits as follows:
//
// +----+----+----+----+----+----+----+----+
// | p0 | p1 | p2 | p3 | p4 | p5 | p6 | p7 |
// +----+----+----+----+----+----+----+----+
//
//------------------------------------------------------------------------
// Given the results of the sorting, compute an index used to specify
// a template id.
inline TemplateIDType vtkOrderedTriangulator::ComputeTemplateIndex()
{
static TemplateIDType mask[8]={0xF0000000,0x0F000000,0x00F00000,0x000F0000,
0x0000F000,0x00000F00,0x000000F0,0x0000000F};
int i;
PointListIterator p;
TemplateIDType templateID=0;
for (p=this->Mesh->Points.begin(), i=0; i<this->NumberOfCellPoints; ++i, ++p)
{
templateID |= ((templateID & mask[i]) | (p->OriginalId << (32-4*(i+1))));
}
return templateID;
}
//------------------------------------------------------------------------
// If a template is missing, add it to the list of templates.
void vtkOrderedTriangulator::AddTemplate()
{
// Find the template list for the given cell type
int templateMayBeAvailable;
TemplateList *tlist;
TemplatesIterator titer = this->Templates->find(this->CellType);
if ( titer != this->Templates->end() ) //something found
{
templateMayBeAvailable = 1;
tlist = (*titer).second;
}
else //nothing found, have to create an entry for this cell type
{
templateMayBeAvailable = 0;
tlist = new TemplateList;
(*this->Templates)[this->CellType] = tlist;
}
// Create the template: its index and connectivity list
TemplateIDType index = this->ComputeTemplateIndex();
// Make sure template has not been created before
TemplateListIterator tplate = tlist->find(index);
if ( templateMayBeAvailable && tplate != tlist->end() )
{
vtkGenericWarningMacro(<<"Template found when it should not have been");
}
else
{
this->Mesh->NumberOfTemplates++;
// The tetras have been classified previously. So allocate space
// and add it as a template list.
OTTemplate *otplate = new(this->TemplateHeap)
OTTemplate(this->Mesh->NumberOfTetrasClassifiedInside,this->TemplateHeap);
(*tlist)[index] = otplate;
// Now fill in the connectivity list
int i;
TetraListIterator t;
OTTetra *tetra;
vtkIdType *clist=otplate->Tetras;
for (t=this->Mesh->Tetras.begin(); t != this->Mesh->Tetras.end(); ++t)
{
if ( (*t)->Type == OTTetra::Inside )
{
tetra = *t;
for (i=0; i<4; i++)
{
*clist++ = tetra->Points[i]->InsertionId;
}
}
}//for all tetras
}
}
//------------------------------------------------------------------------
// Use a template to create the triangulation. Return 0 if a template
// could not be used.
int vtkOrderedTriangulator::TemplateTriangulation()
{
TemplatesIterator titer = this->Templates->find(this->CellType);
if ( titer != this->Templates->end() ) //something found
{
TemplateIDType index = this->ComputeTemplateIndex();
TemplateList *tlist = (*titer).second;
TemplateListIterator tlistIter=tlist->find(index);
if ( tlistIter != tlist->end() ) //something found
{
int i, j;
OTTemplate *tets = (*tlistIter).second;
vtkIdType numTets = tets->NumberOfTetras;
vtkIdType *clist = tets->Tetras;
OTTetra *tetra;
for (i=0; i<numTets; i++)
{
tetra = new(this->Heap) OTTetra();
this->Mesh->Tetras.push_front(tetra);
tetra->Type = OTTetra::Inside;
for (j=0; j<4; j++)
{
tetra->Points[j] = this->Mesh->Points.GetPointer(*clist++);
}
}//for all tetras in template
return 1;
}//if a template found
}//if a template list for this cell type found
return 0;
}
//------------------------------------------------------------------------
void vtkOrderedTriangulator::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "PreSorted: " << (this->PreSorted ? "On\n" : "Off\n");
os << indent << "UseTwoSortIds: " << (this->UseTwoSortIds ? "On\n" : "Off\n");
os << indent << "UseTemplates: " << (this->UseTemplates ? "On\n" : "Off\n");
os << indent << "NumberOfPoints: " << this->NumberOfPoints << endl;
}
|