1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkCellPicker.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkCellPicker.h"
#include "vtkObjectFactory.h"
#include "vtkCommand.h"
#include "vtkMath.h"
#include "vtkBox.h"
#include "vtkPiecewiseFunction.h"
#include "vtkPlaneCollection.h"
#include "vtkTransform.h"
#include "vtkDoubleArray.h"
#include "vtkPoints.h"
#include "vtkPolygon.h"
#include "vtkVoxel.h"
#include "vtkGenericCell.h"
#include "vtkPointData.h"
#include "vtkImageData.h"
#include "vtkActor.h"
#include "vtkMapper.h"
#include "vtkTexture.h"
#include "vtkVolume.h"
#include "vtkAbstractVolumeMapper.h"
#include "vtkVolumeProperty.h"
#include "vtkLODProp3D.h"
#include "vtkImageMapper3D.h"
#include "vtkRenderer.h"
#include "vtkCamera.h"
#include "vtkAbstractCellLocator.h"
vtkStandardNewMacro(vtkCellPicker);
//----------------------------------------------------------------------------
vtkCellPicker::vtkCellPicker()
{
// List of locators for accelerating polydata picking
this->Locators = vtkCollection::New();
// For polydata picking
this->Cell = vtkGenericCell::New();
this->PointIds = vtkIdList::New();
// For interpolation of volume gradients
this->Gradients = vtkDoubleArray::New();
this->Gradients->SetNumberOfComponents(3);
this->Gradients->SetNumberOfTuples(8);
// Miscellaneous ivars
this->Tolerance = 1e-6;
this->VolumeOpacityIsovalue = 0.05;
this->UseVolumeGradientOpacity = 0;
this->PickClippingPlanes = 0;
this->PickTextureData = 0;
// Clear all info returned by the pick
this->ResetCellPickerInfo();
}
//----------------------------------------------------------------------------
vtkCellPicker::~vtkCellPicker()
{
this->Gradients->Delete();
this->Cell->Delete();
this->PointIds->Delete();
this->Locators->Delete();
}
//----------------------------------------------------------------------------
void vtkCellPicker::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "MapperNormal: (" << this->MapperNormal[0] << ","
<< this->MapperNormal[1] << "," << this->MapperNormal[2] << ")\n";
os << indent << "PickNormal: (" << this->PickNormal[0] << ","
<< this->PickNormal[1] << "," << this->PickNormal[2] << ")\n";
if ( this->Texture )
{
os << indent << "Texture: " << this->Texture << "\n";
}
else
{
os << indent << "Texture: (none)";
}
os << indent << "PickTextureData: "
<< (this->PickTextureData ? "On" : "Off") << "\n";
os << indent << "PointId: " << this->PointId << "\n";
os << indent << "CellId: " << this->CellId << "\n";
os << indent << "SubId: " << this->SubId << "\n";
os << indent << "PCoords: (" << this->PCoords[0] << ", "
<< this->PCoords[1] << ", " << this->PCoords[2] << ")\n";
os << indent << "PointIJK: (" << this->PointIJK[0] << ", "
<< this->PointIJK[1] << ", " << this->PointIJK[2] << ")\n";
os << indent << "CellIJK: (" << this->CellIJK[0] << ", "
<< this->CellIJK[1] << ", " << this->CellIJK[2] << ")\n";
os << indent << "ClippingPlaneId: " << this->ClippingPlaneId << "\n";
os << indent << "PickClippingPlanes: "
<< (this->PickClippingPlanes ? "On" : "Off") << "\n";
os << indent << "VolumeOpacityIsovalue: " << this->VolumeOpacityIsovalue
<< "\n";
os << indent << "UseVolumeGradientOpacity: "
<< (this->UseVolumeGradientOpacity ? "On" : "Off") << "\n";
}
//----------------------------------------------------------------------------
void vtkCellPicker::Initialize()
{
this->ResetPickInfo();
this->Superclass::Initialize();
}
//----------------------------------------------------------------------------
void vtkCellPicker::ResetPickInfo()
{
// First, reset information from the superclass, since
// vtkPicker does not have a ResetPickInfo method
this->DataSet = 0;
this->Mapper = 0;
// Reset all the information specific to this class
this->ResetCellPickerInfo();
}
//----------------------------------------------------------------------------
void vtkCellPicker::ResetCellPickerInfo()
{
this->Texture = 0;
this->ClippingPlaneId = -1;
this->PointId = -1;
this->CellId = -1;
this->SubId = -1;
this->PCoords[0] = 0.0;
this->PCoords[1] = 0.0;
this->PCoords[2] = 0.0;
this->CellIJK[0] = 0;
this->CellIJK[1] = 0;
this->CellIJK[2] = 0;
this->PointIJK[0] = 0;
this->PointIJK[1] = 0;
this->PointIJK[2] = 0;
this->MapperNormal[0] = 0.0;
this->MapperNormal[1] = 0.0;
this->MapperNormal[2] = 1.0;
this->PickNormal[0] = 0.0;
this->PickNormal[1] = 0.0;
this->PickNormal[2] = 1.0;
}
//----------------------------------------------------------------------------
void vtkCellPicker::AddLocator(vtkAbstractCellLocator *locator)
{
if (!this->Locators->IsItemPresent(locator))
{
this->Locators->AddItem(locator);
}
}
//----------------------------------------------------------------------------
void vtkCellPicker::RemoveLocator(vtkAbstractCellLocator *locator)
{
this->Locators->RemoveItem(locator);
}
//----------------------------------------------------------------------------
void vtkCellPicker::RemoveAllLocators()
{
this->Locators->RemoveAllItems();
}
//----------------------------------------------------------------------------
int vtkCellPicker::Pick(double selectionX, double selectionY,
double selectionZ, vtkRenderer *renderer)
{
int pickResult = 0;
if ( (pickResult = this->Superclass::Pick(selectionX, selectionY, selectionZ,
renderer)) == 0)
{
// If no pick, set the PickNormal so that it points at the camera
vtkCamera *camera = renderer->GetActiveCamera();
double cameraPos[3];
camera->GetPosition(cameraPos);
if (camera->GetParallelProjection())
{
// For parallel projection, use -ve direction of projection
double cameraFocus[3];
camera->GetFocalPoint(cameraFocus);
this->PickNormal[0] = cameraPos[0] - cameraFocus[0];
this->PickNormal[1] = cameraPos[1] - cameraFocus[1];
this->PickNormal[2] = cameraPos[2] - cameraFocus[2];
}
else
{
// Get the vector from pick position to the camera
this->PickNormal[0] = cameraPos[0] - this->PickPosition[0];
this->PickNormal[1] = cameraPos[1] - this->PickPosition[1];
this->PickNormal[2] = cameraPos[2] - this->PickPosition[2];
}
vtkMath::Normalize(this->PickNormal);
}
return pickResult;
}
//----------------------------------------------------------------------------
// Tolerance for parametric coordinate matching an intersection with a plane
#define VTKCELLPICKER_PLANE_TOL 1e-14
double vtkCellPicker::IntersectWithLine(double p1[3], double p2[3],
double tol,
vtkAssemblyPath *path,
vtkProp3D *prop,
vtkAbstractMapper3D *m)
{
vtkMapper *mapper = 0;
vtkAbstractVolumeMapper *volumeMapper = 0;
vtkImageMapper3D *imageMapper = 0;
double tMin = VTK_DOUBLE_MAX;
double t1 = 0.0;
double t2 = 1.0;
// Clip the ray with the mapper's ClippingPlanes and adjust t1, t2.
// This limits the pick search to the inside of the clipped region.
int clippingPlaneId = -1;
if (m && !this->ClipLineWithPlanes(m, this->Transform->GetMatrix(),
p1, p2, t1, t2, clippingPlaneId))
{
return VTK_DOUBLE_MAX;
}
// Initialize the pick position to the frontmost clipping plane
if (this->PickClippingPlanes && clippingPlaneId >= 0)
{
tMin = t1;
}
// Volume
else if ( (volumeMapper = vtkAbstractVolumeMapper::SafeDownCast(m)) )
{
tMin = this->IntersectVolumeWithLine(p1, p2, t1, t2, prop, volumeMapper);
}
// Image
else if ( (imageMapper = vtkImageMapper3D::SafeDownCast(m)) )
{
tMin = this->IntersectImageWithLine(p1, p2, t1, t2, prop, imageMapper);
}
// Actor
else if ( (mapper = vtkMapper::SafeDownCast(m)) )
{
tMin = this->IntersectActorWithLine(p1, p2, t1, t2, tol, prop, mapper);
}
// Unidentified Prop3D
else
{
tMin = this->IntersectProp3DWithLine(p1, p2, t1, t2, tol, prop, m);
}
if (tMin < this->GlobalTMin)
{
this->GlobalTMin = tMin;
this->SetPath(path);
this->ClippingPlaneId = clippingPlaneId;
// If tMin == t1, the pick didn't go past the first clipping plane,
// so the position and normal will be set from the clipping plane.
if (fabs(tMin - t1) < VTKCELLPICKER_PLANE_TOL && clippingPlaneId >= 0)
{
this->MapperPosition[0] = p1[0]*(1.0-t1) + p2[0]*t1;
this->MapperPosition[1] = p1[1]*(1.0-t1) + p2[1]*t1;
this->MapperPosition[2] = p1[2]*(1.0-t1) + p2[2]*t1;
double plane[4];
m->GetClippingPlaneInDataCoords(
this->Transform->GetMatrix(), clippingPlaneId, plane);
vtkMath::Normalize(plane);
// Want normal outward from the planes, not inward
this->MapperNormal[0] = -plane[0];
this->MapperNormal[1] = -plane[1];
this->MapperNormal[2] = -plane[2];
}
// The position comes from the data, so put it into world coordinates
this->Transform->TransformPoint(this->MapperPosition, this->PickPosition);
this->Transform->TransformNormal(this->MapperNormal, this->PickNormal);
}
return tMin;
}
//----------------------------------------------------------------------------
double vtkCellPicker::IntersectActorWithLine(const double p1[3],
const double p2[3],
double t1, double t2,
double tol,
vtkProp3D *prop,
vtkMapper *mapper)
{
// This code was taken from the original CellPicker with almost no
// modification except for the locator and texture additions.
// Intersect each cell with ray. Keep track of one closest to
// the eye (within the tolerance tol) and within the clipping range).
// Note that we fudge the "closest to" (tMin+this->Tolerance) a little and
// keep track of the cell with the best pick based on parametric
// coordinate (pick the minimum, maximum parametric distance). This
// breaks ties in a reasonable way when cells are the same distance
// from the eye (like cells laying on a 2D plane).
vtkDataSet *data = mapper->GetInput();
double tMin = VTK_DOUBLE_MAX;
double minPCoords[3];
double pDistMin = VTK_DOUBLE_MAX;
vtkIdType minCellId = -1;
int minSubId = -1;
double minXYZ[3];
minXYZ[0] = minXYZ[1] = minXYZ[2] = 0.0;
// Polydata has no 3D cells
int isPolyData = data->IsA("vtkPolyData");
vtkCollectionSimpleIterator iter;
vtkAbstractCellLocator *locator = 0;
this->Locators->InitTraversal(iter);
while ( (locator = static_cast<vtkAbstractCellLocator *>(
this->Locators->GetNextItemAsObject(iter))) )
{
if (locator->GetDataSet() == data)
{
break;
}
}
// Make a new p1 and p2 using the clipped t1 and t2
double q1[3], q2[3];
q1[0] = p1[0]; q1[1] = p1[1]; q1[2] = p1[2];
q2[0] = p2[0]; q2[1] = p2[1]; q2[2] = p2[2];
if (t1 != 0.0 || t2 != 1.0)
{
for (int j = 0; j < 3; j++)
{
q1[j] = p1[j]*(1.0 - t1) + p2[j]*t1;
q2[j] = p1[j]*(1.0 - t2) + p2[j]*t2;
}
}
// Use the locator if one exists for this data
if (locator)
{
if (!locator->IntersectWithLine(q1, q2, tol, tMin, minXYZ,
minPCoords, minSubId, minCellId,
this->Cell))
{
return VTK_DOUBLE_MAX;
}
// Stretch tMin out to the original range
if (t1 != 0.0 || t2 != 1.0)
{
tMin = t1*(1.0 - tMin) + t2*tMin;
}
// If cell is a strip, then replace cell with a sub-cell
this->SubCellFromCell(this->Cell, minSubId);
}
else
{
vtkIdList *pointIds = this->PointIds;
vtkIdType numCells = data->GetNumberOfCells();
for (vtkIdType cellId = 0; cellId < numCells; cellId++)
{
double t;
double x[3];
double pcoords[3];
pcoords[0] = pcoords[1] = pcoords[2] = 0;
int newSubId = -1;
int numSubIds = 1;
// If it is a strip, we need to iterate over the subIds
int cellType = data->GetCellType(cellId);
int useSubCells = this->HasSubCells(cellType);
if (useSubCells)
{
// Get the pointIds for the strip and the length of the strip
data->GetCellPoints(cellId, pointIds);
numSubIds = this->GetNumberOfSubCells(pointIds, cellType);
}
// This will only loop once unless we need to deal with a strip
for (int subId = 0; subId < numSubIds; subId++)
{
if (useSubCells)
{
// Get a sub-cell from a the strip
this->GetSubCell(data, pointIds, subId, cellType, this->Cell);
}
else
{
data->GetCell(cellId, this->Cell);
}
int cellPicked = 0;
if (isPolyData)
{
// Polydata can always be picked with original endpoints
cellPicked = this->Cell->IntersectWithLine(
const_cast<double *>(p1), const_cast<double *>(p2),
tol, t, x, pcoords, newSubId);
}
else
{
// Any 3D cells need to be intersected with a line segment that
// has been clipped with the clipping planes, in case one end is
// actually inside the cell.
cellPicked = this->Cell->IntersectWithLine(
q1, q2, tol, t, x, pcoords, newSubId);
// Stretch t out to the original range
if (t1 != 0.0 || t2 != 1.0)
{
t = t1*(1.0 - t) + t2*t;
}
}
if (cellPicked && t <= (tMin + this->Tolerance) && t >= t1 && t <= t2)
{
double pDist = this->Cell->GetParametricDistance(pcoords);
if (pDist < pDistMin || (pDist == pDistMin && t < tMin))
{
tMin = t;
pDistMin = pDist;
// save all of these
minCellId = cellId;
minSubId = newSubId;
if (useSubCells)
{
minSubId = subId;
}
for (int k = 0; k < 3; k++)
{
minXYZ[k] = x[k];
minPCoords[k] = pcoords[k];
}
} // for all subIds
} // if minimum, maximum
} // if a close cell
} // for all cells
}
// Do this if a cell was intersected
if (minCellId >= 0 && tMin < this->GlobalTMin)
{
this->ResetPickInfo();
// Get the cell, convert to triangle if it is a strip
vtkGenericCell *cell = this->Cell;
// If we used a locator, we already have the picked cell
if (!locator)
{
int cellType = data->GetCellType(minCellId);
if (this->HasSubCells(cellType))
{
data->GetCellPoints(minCellId, this->PointIds);
this->GetSubCell(data, this->PointIds, minSubId, cellType, cell);
}
else
{
data->GetCell(minCellId, cell);
}
}
// Get the cell weights
vtkIdType numPoints = cell->GetNumberOfPoints();
double *weights = new double[numPoints];
for (vtkIdType i = 0; i < numPoints; i++)
{
weights[i] = 0;
}
// Get the interpolation weights (point is thrown away)
double point[3];
cell->EvaluateLocation(minSubId, minPCoords, point, weights);
this->Mapper = mapper;
// Get the texture from the actor or the LOD
vtkActor *actor = 0;
vtkLODProp3D *lodActor = 0;
if ( (actor = vtkActor::SafeDownCast(prop)) )
{
this->Texture = actor->GetTexture();
}
else if ( (lodActor = vtkLODProp3D::SafeDownCast(prop)) )
{
int lodId = lodActor->GetPickLODID();
lodActor->GetLODTexture(lodId, &this->Texture);
}
if (this->PickTextureData && this->Texture)
{
// Return the texture's image data to the user
vtkImageData *image = this->Texture->GetInput();
this->DataSet = image;
// Get and check the image dimensions
int extent[6];
image->GetExtent(extent);
int dimensionsAreValid = 1;
int dimensions[3];
for (int i = 0; i < 3; i++)
{
dimensions[i] = extent[2*i + 1] - extent[2*i] + 1;
dimensionsAreValid = (dimensionsAreValid && dimensions[i] > 0);
}
// Use the texture coord to set the information
double tcoord[3];
if (dimensionsAreValid &&
this->ComputeSurfaceTCoord(data, cell, weights, tcoord))
{
// Take the border into account when computing coordinates
double x[3];
x[0] = extent[0] + tcoord[0]*dimensions[0] - 0.5;
x[1] = extent[2] + tcoord[1]*dimensions[1] - 0.5;
x[2] = extent[4] + tcoord[2]*dimensions[2] - 0.5;
this->SetImageDataPickInfo(x, extent);
}
}
else
{
// Return the polydata to the user
this->DataSet = data;
this->CellId = minCellId;
this->SubId = minSubId;
this->PCoords[0] = minPCoords[0];
this->PCoords[1] = minPCoords[1];
this->PCoords[2] = minPCoords[2];
// Find the point with the maximum weight
double maxWeight = 0;
vtkIdType iMaxWeight = -1;
for (vtkIdType i = 0; i < numPoints; i++)
{
if (weights[i] > maxWeight)
{
iMaxWeight = i;
}
}
// If maximum weight is found, use it to get the PointId
if (iMaxWeight != -1)
{
this->PointId = cell->PointIds->GetId(iMaxWeight);
}
}
// Set the mapper position
this->MapperPosition[0] = minXYZ[0];
this->MapperPosition[1] = minXYZ[1];
this->MapperPosition[2] = minXYZ[2];
// Compute the normal
if (!this->ComputeSurfaceNormal(data, cell, weights, this->MapperNormal))
{
// By default, the normal points back along view ray
this->MapperNormal[0] = p1[0] - p2[0];
this->MapperNormal[1] = p1[1] - p2[1];
this->MapperNormal[2] = p1[2] - p2[2];
vtkMath::Normalize(this->MapperNormal);
}
delete [] weights;
}
return tMin;
}
//----------------------------------------------------------------------------
// Intersect a vtkVolume with a line by ray casting.
// For algorithm stability: choose a tolerance that is larger than
// the expected roundoff error in computing the voxel indices from "t"
#define VTKCELLPICKER_VOXEL_TOL 1e-6
double vtkCellPicker::IntersectVolumeWithLine(const double p1[3],
const double p2[3],
double t1, double t2,
vtkProp3D *prop,
vtkAbstractVolumeMapper *mapper)
{
vtkImageData *data = vtkImageData::SafeDownCast(mapper->GetDataSetInput());
if (data == 0)
{
// This picker only works with image inputs
return VTK_DOUBLE_MAX;
}
// Convert ray to structured coordinates
double spacing[3], origin[3];
int extent[6];
data->GetSpacing(spacing);
data->GetOrigin(origin);
data->GetExtent(extent);
double x1[3], x2[3];
for (int i = 0; i < 3; i++)
{
x1[i] = (p1[i] - origin[i])/spacing[i];
x2[i] = (p2[i] - origin[i])/spacing[i];
}
// Clip the ray with the extent, results go in s1 and s2
int planeId;
double s1, s2;
if (!this->ClipLineWithExtent(extent, x1, x2, s1, s2, planeId))
{
return VTK_DOUBLE_MAX;
}
if (s1 >= t1) { t1 = s1; }
if (s2 <= t2) { t2 = s2; }
// Sanity check
if (t2 < t1)
{
return VTK_DOUBLE_MAX;
}
// Get the property from the volume or the LOD
vtkVolumeProperty *property = 0;
vtkVolume *volume = 0;
vtkLODProp3D *lodVolume = 0;
if ( (volume = vtkVolume::SafeDownCast(prop)) )
{
property = volume->GetProperty();
}
else if ( (lodVolume = vtkLODProp3D::SafeDownCast(prop)) )
{
int lodId = lodVolume->GetPickLODID();
lodVolume->GetLODProperty(lodId, &property);
}
// Get the theshold for the opacity
double opacityThreshold = this->VolumeOpacityIsovalue;
// Compute the length of the line intersecting the volume
double rayLength = sqrt(vtkMath::Distance2BetweenPoints(x1, x2))*(t2 - t1);
// This is the minimum increment that will be allowed
double tTol = VTKCELLPICKER_VOXEL_TOL/rayLength*(t2 - t1);
// Find out whether there are multiple components in the volume
int numComponents = data->GetNumberOfScalarComponents();
int independentComponents = 0;
if (property)
{
independentComponents = property->GetIndependentComponents();
}
int numIndependentComponents = 1;
if (independentComponents)
{
numIndependentComponents = numComponents;
}
// Create a scalar array, it will be needed later
vtkDataArray *scalars = vtkDataArray::CreateDataArray(data->GetScalarType());
scalars->SetNumberOfComponents(numComponents);
vtkIdType scalarArraySize = numComponents*data->GetNumberOfPoints();
int scalarSize = data->GetScalarSize();
void *scalarPtr = data->GetScalarPointer();
// Go through each volume component separately
double tMin = VTK_DOUBLE_MAX;
for (int component = 0; component < numIndependentComponents; component++)
{
vtkPiecewiseFunction *scalarOpacity =
(property ? property->GetScalarOpacity(component) : 0);
int disableGradientOpacity =
(property ? property->GetDisableGradientOpacity(component) : 1);
vtkPiecewiseFunction *gradientOpacity = 0;
if (!disableGradientOpacity && this->UseVolumeGradientOpacity)
{
gradientOpacity = property->GetGradientOpacity(component);
}
// This is the component used to compute the opacity
int oComponent = component;
if (!independentComponents)
{
oComponent = numComponents - 1;
}
// Make a new array, shifted to the desired component
scalars->SetVoidArray(static_cast<void *>(static_cast<char *>(scalarPtr)
+ scalarSize*oComponent),
scalarArraySize, 1);
// Do a ray cast with linear interpolation.
double opacity = 0.0;
double lastOpacity = 0.0;
double lastT = t1;
double x[3];
double pcoords[3];
int xi[3];
// Ray cast loop
double t = t1;
while (t <= t2)
{
for (int j = 0; j < 3; j++)
{
// "t" is the fractional distance between endpoints x1 and x2
x[j] = x1[j]*(1.0 - t) + x2[j]*t;
// Paranoia bounds check
if (x[j] < extent[2*j]) { x[j] = extent[2*j]; }
else if (x[j] > extent[2*j + 1]) { x[j] = extent[2*j+1]; }
xi[j] = vtkMath::Floor(x[j]);
pcoords[j] = x[j] - xi[j];
}
opacity = this->ComputeVolumeOpacity(xi, pcoords, data, scalars,
scalarOpacity, gradientOpacity);
// If the ray has crossed the isosurface, then terminate the loop
if (opacity > opacityThreshold)
{
break;
}
lastT = t;
lastOpacity = opacity;
// Compute the next "t" value that crosses a voxel boundary
t = 1.0;
for (int k = 0; k < 3; k++)
{
// Skip dimension "k" if it is perpendicular to ray
if (fabs(x2[k] - x1[k]) > VTKCELLPICKER_VOXEL_TOL*rayLength)
{
// Compute the previous coord along dimension "k"
double lastX = x1[k]*(1.0 - lastT) + x2[k]*lastT;
// Increment to next slice boundary along dimension "k",
// including a tolerance value for stability in cases
// where lastX is just less than an integer value.
double nextX = 0;
if (x2[k] > x1[k])
{
nextX = vtkMath::Floor(lastX + VTKCELLPICKER_VOXEL_TOL) + 1;
}
else
{
nextX = vtkMath::Ceil(lastX - VTKCELLPICKER_VOXEL_TOL) - 1;
}
// Compute the "t" value for this slice boundary
double ttry = lastT + (nextX - lastX)/(x2[k] - x1[k]);
if (ttry > lastT + tTol && ttry < t)
{
t = ttry;
}
}
}
} // End of "while (t <= t2)"
// If the ray hit the isosurface, compute the isosurface position
if (opacity > opacityThreshold)
{
// Backtrack to the actual surface position unless this was first step
if (t > t1)
{
double f = (opacityThreshold - lastOpacity)/(opacity - lastOpacity);
t = lastT*(1.0 - f) + t*f;
for (int j = 0; j < 3; j++)
{
x[j] = x1[j]*(1.0 - t) + x2[j]*t;
if (x[j] < extent[2*j]) { x[j] = extent[2*j]; }
else if (x[j] > extent[2*j + 1]) { x[j] = extent[2*j+1]; }
xi[j] = vtkMath::Floor(x[j]);
pcoords[j] = x[j] - xi[j];
}
}
// Check to see if this is the new global minimum
if (t < tMin && t < this->GlobalTMin)
{
this->ResetPickInfo();
tMin = t;
this->Mapper = mapper;
this->DataSet = data;
this->SetImageDataPickInfo(x, extent);
this->MapperPosition[0] = x[0]*spacing[0] + origin[0];
this->MapperPosition[1] = x[1]*spacing[1] + origin[1];
this->MapperPosition[2] = x[2]*spacing[2] + origin[2];
// Default the normal to the view-plane normal. This default
// will be used if the gradient cannot be computed any other way.
this->MapperNormal[0] = p1[0] - p2[0];
this->MapperNormal[1] = p1[1] - p2[1];
this->MapperNormal[2] = p1[2] - p2[2];
vtkMath::Normalize(this->MapperNormal);
// Check to see if this is the first step, which means that this
// is the boundary of the volume. If this is the case, use the
// normal of the boundary.
if (t == t1 && planeId >= 0 && xi[planeId/2] == extent[planeId])
{
this->MapperNormal[0] = 0.0;
this->MapperNormal[1] = 0.0;
this->MapperNormal[2] = 0.0;
this->MapperNormal[planeId/2] = 2.0*(planeId%2) - 1.0;
if (spacing[planeId/2] < 0)
{
this->MapperNormal[planeId/2] = - this->MapperNormal[planeId/2];
}
}
else
{
// Set the normal from the direction of the gradient
int *ci = this->CellIJK;
double weights[8];
vtkVoxel::InterpolationFunctions(this->PCoords, weights);
data->GetVoxelGradient(ci[0], ci[1], ci[2], scalars,
this->Gradients);
double v[3]; v[0] = v[1] = v[2] = 0.0;
for (int k = 0; k < 8; k++)
{
double *pg = this->Gradients->GetTuple(k);
v[0] += pg[0]*weights[k];
v[1] += pg[1]*weights[k];
v[2] += pg[2]*weights[k];
}
double norm = vtkMath::Norm(v);
if (norm > 0)
{
this->MapperNormal[0] = v[0]/norm;
this->MapperNormal[1] = v[1]/norm;
this->MapperNormal[2] = v[2]/norm;
}
}
} // End of "if (opacity > opacityThreshold)"
} // End of "if (t < tMin && t < this->GlobalTMin)"
} // End of loop over volume components
scalars->Delete();
return tMin;
}
//----------------------------------------------------------------------------
double vtkCellPicker::IntersectImageWithLine(const double p1[3],
const double p2[3],
double t1, double t2,
vtkProp3D *prop,
vtkImageMapper3D *imageMapper)
{
// Get the image information
vtkImageData *data = imageMapper->GetInput();
double spacing[3], origin[3];
int extent[6];
data->GetSpacing(spacing);
data->GetOrigin(origin);
data->GetExtent(extent);
// Get the plane equation for the slice
double normal[4];
imageMapper->GetSlicePlaneInDataCoords(prop->GetMatrix(), normal);
// Point the normal towards camera
if (normal[0]*(p1[0] - p2[0]) +
normal[1]*(p1[1] - p2[1]) +
normal[2]*(p1[2] - p2[2]) < 0)
{
normal[0] = -normal[0];
normal[1] = -normal[1];
normal[2] = -normal[2];
normal[3] = -normal[3];
}
// And finally convert normal to structured coords
double xnormal[4];
xnormal[0] = normal[0]*spacing[0];
xnormal[1] = normal[1]*spacing[1];
xnormal[2] = normal[2]*spacing[2];
xnormal[3] = normal[3] + vtkMath::Dot(origin, normal);
double l = vtkMath::Norm(xnormal);
xnormal[0] /= l;
xnormal[1] /= l;
xnormal[2] /= l;
xnormal[3] /= l;
// Also convert ray to structured coords
double x1[3], x2[3];
for (int i = 0; i < 3; i++)
{
x1[i] = (p1[i] - origin[i])/spacing[i];
x2[i] = (p2[i] - origin[i])/spacing[i];
}
// Get the bounds to discover any cropping that has been applied
double bounds[6];
imageMapper->GetBounds(bounds);
// Convert bounds to structured coords
for (int k = 0; k < 3; k++)
{
bounds[2*k] = (bounds[2*k] - origin[k])/spacing[k];
bounds[2*k+1] = (bounds[2*k+1] - origin[k])/spacing[k];
// It should be a multiple of 0.5, so round to closest multiple of 0.5
// (this reduces the impact of roundoff error from the above computation)
bounds[2*k] = 0.5*vtkMath::Round(2.0*(bounds[2*k]));
bounds[2*k+1] = 0.5*vtkMath::Round(2.0*(bounds[2*k+1]));
// Reverse if spacing is negative
if (spacing[k] < 0)
{
double bt = bounds[2*k];
bounds[2*k] = bounds[2*k+1];
bounds[2*k+1] = bt;
}
}
// Clip the ray with the extent
int planeId, plane2Id;
double tMin, tMax;
if (!vtkBox::IntersectWithLine(bounds, x1, x2, tMin, tMax, 0, 0,
planeId, plane2Id))
{
return VTK_DOUBLE_MAX;
}
if (tMin != tMax)
{
// Intersect the ray with the slice plane
double w1 = vtkMath::Dot(x1, xnormal) + xnormal[3];
double w2 = vtkMath::Dot(x2, xnormal) + xnormal[3];
if (w1*w2 > VTKCELLPICKER_VOXEL_TOL)
{
return VTK_DOUBLE_MAX;
}
if (w1*w2 < 0)
{
tMin = w1/(w1 - w2);
}
}
// Make sure that intersection is within clipping planes
if (tMin < t1 || tMin > t2)
{
return VTK_DOUBLE_MAX;
}
if (tMin < this->GlobalTMin)
{
// Compute the pick position in structured coords
double x[3];
for (int j = 0; j < 3; j++)
{
x[j] = x1[j]*(1.0 - tMin) + x2[j]*tMin;
// Do a bounds check. If beyond tolerance of bound, then
// pick failed, but if within tolerance, clamp the coord
// to the bound for robustness against roundoff errors.
if (x[j] < bounds[2*j])
{
if (x[j] < bounds[2*j] - VTKCELLPICKER_VOXEL_TOL)
{
return VTK_DOUBLE_MAX;
}
x[j] = bounds[2*j];
}
else if (x[j] > bounds[2*j+1])
{
if (x[j] > bounds[2*j+1] + VTKCELLPICKER_VOXEL_TOL)
{
return VTK_DOUBLE_MAX;
}
x[j] = bounds[2*j + 1];
}
}
this->ResetPickInfo();
this->Mapper = imageMapper;
this->DataSet = data;
// Compute all the pick values
this->SetImageDataPickInfo(x, extent);
this->MapperPosition[0] = origin[0] + x[0]*spacing[0];
this->MapperPosition[1] = origin[1] + x[1]*spacing[1];
this->MapperPosition[2] = origin[2] + x[2]*spacing[2];
// Set the normal in mapper coordinates
this->MapperNormal[0] = normal[0];
this->MapperNormal[1] = normal[1];
this->MapperNormal[2] = normal[2];
}
return tMin;
}
//----------------------------------------------------------------------------
// This is a catch-all for Prop3D types that vtkCellPicker does not
// recognize. It can be overridden in subclasses to provide support
// for picking new Prop3D types.
double vtkCellPicker::IntersectProp3DWithLine(const double *, const double *,
double, double, double,
vtkProp3D *,
vtkAbstractMapper3D *)
{
return VTK_DOUBLE_MAX;
}
//----------------------------------------------------------------------------
// Clip a line with a collection of clipping planes, or return zero if
// the line does not intersect the volume enclosed by the planes.
// The result of the clipping is retured in t1 and t2, which will have
// values between 0 and 1. The index of the frontmost intersected plane is
// returned in planeId.
int vtkCellPicker::ClipLineWithPlanes(vtkAbstractMapper3D *mapper,
vtkMatrix4x4 *mat,
const double p1[3], const double p2[3],
double &t1, double &t2, int& planeId)
{
// The minPlaneId is the index of the plane that t1 lies on
planeId = -1;
t1 = 0.0;
t2 = 1.0;
double plane[4];
int numClipPlanes = mapper->GetNumberOfClippingPlanes();
for (int i = 0; i < numClipPlanes; i++)
{
mapper->GetClippingPlaneInDataCoords(mat, i, plane);
double d1 = plane[0]*p1[0] + plane[1]*p1[1] + plane[2]*p1[2] + plane[3];
double d2 = plane[0]*p2[0] + plane[1]*p2[1] + plane[2]*p2[2] + plane[3];
// If both distances are negative, both points are outside
if (d1 < 0 && d2 < 0)
{
return 0;
}
// If only one of the distances is negative, the line crosses the plane
else if (d1 < 0 || d2 < 0)
{
// Compute fractional distance "t" of the crossing between p1 & p2
double t = 0.0;
// The "if" here just avoids an expensive division when possible
if (d1 != 0)
{
// We will never have d1==d2 since they have different signs
t = d1/(d1 - d2);
}
// If point p1 was clipped, adjust t1
if (d1 < 0)
{
if (t >= t1)
{
t1 = t;
planeId = i;
}
}
// else point p2 was clipped, so adjust t2
else
{
if (t <= t2)
{
t2 = t;
}
}
// If this happens, there's no line left
if (t1 > t2)
{
return 0;
}
}
}
return 1;
}
//----------------------------------------------------------------------------
// Clip a line in structured coordinates with an extent. If the line
// does not intersect the extent, the return value will be zero.
// The fractional position of the new x1 with respect to the original line
// is returned in tMin, and the index of the frontmost intersected plane
// is returned in planeId. The planes are ordered as follows:
// xmin, xmax, ymin, ymax, zmin, zmax.
int vtkCellPicker::ClipLineWithExtent(const int extent[6],
const double x1[3], const double x2[3],
double &t1, double &t2, int &planeId)
{
double bounds[6];
bounds[0] = extent[0]; bounds[1] = extent[1]; bounds[2] = extent[2];
bounds[3] = extent[3]; bounds[4] = extent[4]; bounds[5] = extent[5];
int p2;
return vtkBox::IntersectWithLine(bounds, x1, x2, t1, t2, 0, 0, planeId, p2);
}
//----------------------------------------------------------------------------
// Compute the cell normal either by interpolating the point normals,
// or by computing the plane normal for 2D cells.
int vtkCellPicker::ComputeSurfaceNormal(vtkDataSet *data, vtkCell *cell,
const double *weights,
double normal[3])
{
vtkDataArray *normals = data->GetPointData()->GetNormals();
if (normals)
{
normal[0] = normal[1] = normal[2] = 0.0;
double pointNormal[3];
vtkIdType numPoints = cell->GetNumberOfPoints();
for (vtkIdType k = 0; k < numPoints; k++)
{
normals->GetTuple(cell->PointIds->GetId(k), pointNormal);
normal[0] += pointNormal[0]*weights[k];
normal[1] += pointNormal[1]*weights[k];
normal[2] += pointNormal[2]*weights[k];
}
vtkMath::Normalize(normal);
}
else if (cell->GetCellDimension() == 2)
{
vtkPolygon::ComputeNormal(cell->Points, normal);
}
else
{
return 0;
}
return 1;
}
//----------------------------------------------------------------------------
// Use weights to compute the texture coordinates of a point on the cell.
int vtkCellPicker::ComputeSurfaceTCoord(vtkDataSet *data, vtkCell *cell,
const double *weights,
double tcoord[3])
{
vtkDataArray *tcoords = data->GetPointData()->GetTCoords();
if (tcoords)
{
tcoord[0] = tcoord[1] = tcoord[2] = 0.0;
double pointTCoord[3];
int numComponents = tcoords->GetNumberOfComponents();
vtkIdType numPoints = cell->GetNumberOfPoints();
for (vtkIdType k = 0; k < numPoints; k++)
{
tcoords->GetTuple(cell->PointIds->GetId(k), pointTCoord);
for (int i = 0; i < numComponents; i++)
{
tcoord[i] += pointTCoord[i]*weights[k];
}
}
return 1;
}
return 0;
}
//----------------------------------------------------------------------------
// Do an in-place replacement of a cell with a subcell of that cell
void vtkCellPicker::SubCellFromCell(vtkGenericCell *cell, int subId)
{
switch(cell->GetCellType())
{
case VTK_TRIANGLE_STRIP:
{
static int idx[2][3]={{0,1,2},{1,0,2}};
int *order = idx[subId & 1];
vtkIdType pointIds[3];
double points[3][3];
pointIds[0] = cell->PointIds->GetId(subId + order[0]);
pointIds[1] = cell->PointIds->GetId(subId + order[1]);
pointIds[2] = cell->PointIds->GetId(subId + order[2]);
cell->Points->GetPoint(subId + order[0], points[0]);
cell->Points->GetPoint(subId + order[1], points[1]);
cell->Points->GetPoint(subId + order[2], points[2]);
cell->SetCellTypeToTriangle();
cell->PointIds->SetId(0, pointIds[0]);
cell->PointIds->SetId(1, pointIds[1]);
cell->PointIds->SetId(2, pointIds[2]);
cell->Points->SetPoint(0, points[0]);
cell->Points->SetPoint(1, points[1]);
cell->Points->SetPoint(2, points[2]);
}
break;
case VTK_POLY_LINE:
{
vtkIdType pointIds[2];
double points[2][3];
pointIds[0] = cell->PointIds->GetId(subId);
pointIds[1] = cell->PointIds->GetId(subId + 1);
cell->Points->GetPoint(subId, points[0]);
cell->Points->GetPoint(subId + 1, points[1]);
cell->SetCellTypeToLine();
cell->PointIds->SetId(0, pointIds[0]);
cell->PointIds->SetId(1, pointIds[1]);
cell->Points->SetPoint(0, points[0]);
cell->Points->SetPoint(1, points[1]);
}
break;
case VTK_POLY_VERTEX:
{
double point[3];
vtkIdType pointId = cell->PointIds->GetId(subId);
cell->Points->GetPoint(subId, point);
cell->SetCellTypeToVertex();
cell->PointIds->SetId(0, pointId);
cell->Points->SetPoint(0, point);
}
break;
}
}
//----------------------------------------------------------------------------
int vtkCellPicker::HasSubCells(int cellType)
{
switch (cellType)
{
case VTK_TRIANGLE_STRIP:
case VTK_POLY_LINE:
case VTK_POLY_VERTEX:
return 1;
}
return 0;
}
//----------------------------------------------------------------------------
// Extract a single subcell from a cell in a data set
int vtkCellPicker::GetNumberOfSubCells(vtkIdList *pointIds, int cellType)
{
switch (cellType)
{
case VTK_TRIANGLE_STRIP:
return pointIds->GetNumberOfIds() - 2;
case VTK_POLY_LINE:
return pointIds->GetNumberOfIds() - 1;
case VTK_POLY_VERTEX:
return pointIds->GetNumberOfIds();
}
return 0;
}
//----------------------------------------------------------------------------
// Extract a single subcell from a cell in a data set. This method
// requires a vtkIdList that contains the pointIds for the cell.
void vtkCellPicker::GetSubCell(vtkDataSet *data, vtkIdList *ptIds, int subId,
int cellType, vtkGenericCell *cell)
{
switch(cellType)
{
case VTK_TRIANGLE_STRIP:
{
static int idx[2][3]={{0,1,2},{1,0,2}};
int *order = idx[subId & 1];
vtkIdType pointIds[3];
double points[3][3];
pointIds[0] = ptIds->GetId(subId + order[0]);
pointIds[1] = ptIds->GetId(subId + order[1]);
pointIds[2] = ptIds->GetId(subId + order[2]);
data->GetPoint(pointIds[0], points[0]);
data->GetPoint(pointIds[1], points[1]);
data->GetPoint(pointIds[2], points[2]);
cell->SetCellTypeToTriangle();
cell->PointIds->SetId(0, pointIds[0]);
cell->PointIds->SetId(1, pointIds[1]);
cell->PointIds->SetId(2, pointIds[2]);
cell->Points->SetPoint(0, points[0]);
cell->Points->SetPoint(1, points[1]);
cell->Points->SetPoint(2, points[2]);
}
break;
case VTK_POLY_LINE:
{
vtkIdType pointIds[2];
double points[2][3];
pointIds[0] = ptIds->GetId(subId);
pointIds[1] = ptIds->GetId(subId + 1);
data->GetPoint(pointIds[0], points[0]);
data->GetPoint(pointIds[1], points[1]);
cell->SetCellTypeToLine();
cell->PointIds->SetId(0, pointIds[0]);
cell->PointIds->SetId(1, pointIds[1]);
cell->Points->SetPoint(0, points[0]);
cell->Points->SetPoint(1, points[1]);
}
break;
case VTK_POLY_VERTEX:
{
double point[3];
vtkIdType pointId = ptIds->GetId(subId);
data->GetPoint(pointId, point);
cell->SetCellTypeToVertex();
cell->PointIds->SetId(0, pointId);
cell->Points->SetPoint(0, point);
}
break;
}
}
//----------------------------------------------------------------------------
// Set all Cell and Point information, given a structured coordinate
// and the extent of the data.
void vtkCellPicker::SetImageDataPickInfo(const double x[3],
const int extent[6])
{
for (int j = 0; j < 3; j++)
{
double xj = x[j];
if (xj < extent[2*j]) { xj = extent[2*j]; }
if (xj > extent[2*j+1]) { xj = extent[2*j+1]; }
this->CellIJK[j] = vtkMath::Floor(xj);
this->PCoords[j] = xj - this->CellIJK[j];
// Keep the cell in-bounds if it is on the edge
if (this->CellIJK[j] == extent[2*j+1] &&
this->CellIJK[j] > extent[2*j])
{
this->CellIJK[j] -= 1;
this->PCoords[j] = 1.0;
}
this->PointIJK[j] = this->CellIJK[j] + (this->PCoords[j] >= 0.5);
}
// Stupid const/non-const, and I hate const_cast
int ext[6];
ext[0] = extent[0]; ext[1] = extent[1];
ext[2] = extent[2]; ext[3] = extent[3];
ext[4] = extent[4]; ext[5] = extent[5];
this->PointId =
vtkStructuredData::ComputePointIdForExtent(ext, this->PointIJK);
this->CellId =
vtkStructuredData::ComputeCellIdForExtent(ext, this->CellIJK);
this->SubId = 0;
}
//----------------------------------------------------------------------------
// Given a structured position within the volume, and the point scalars,
// compute the local opacity of the volume.
double vtkCellPicker::ComputeVolumeOpacity(
const int xi[3], const double pcoords[3],
vtkImageData *data, vtkDataArray *scalars,
vtkPiecewiseFunction *scalarOpacity, vtkPiecewiseFunction *gradientOpacity)
{
double opacity = 1.0;
// Get interpolation weights from the pcoords
double weights[8];
vtkVoxel::InterpolationFunctions(const_cast<double *>(pcoords), weights);
// Get the volume extent to avoid out-of-bounds
int extent[6];
data->GetExtent(extent);
int scalarType = data->GetScalarType();
// Compute the increments for the three directions, checking the bounds
vtkIdType xInc = 1;
vtkIdType yInc = extent[1] - extent[0] + 1;
vtkIdType zInc = yInc*(extent[3] - extent[2] + 1);
if (xi[0] == extent[1]) { xInc = 0; }
if (xi[1] == extent[3]) { yInc = 0; }
if (xi[2] == extent[5]) { zInc = 0; }
// Use the increments and weights to interpolate the data
vtkIdType ptId = data->ComputePointId(const_cast<int *>(xi));
double val = 0.0;
for (int j = 0; j < 8; j++)
{
vtkIdType ptInc = (j & 1)*xInc + ((j>>1) & 1)*yInc + ((j>>2) & 1)*zInc;
val += weights[j]*scalars->GetComponent(ptId + ptInc, 0);
}
// Compute the ScalarOpacity
if (scalarOpacity)
{
opacity *= scalarOpacity->GetValue(val);
}
else if (scalarType == VTK_FLOAT || scalarType == VTK_DOUBLE)
{
opacity *= val;
}
else
{
// Assume unsigned char
opacity *= val/255.0;
}
// Compute gradient and GradientOpacity
if (gradientOpacity)
{
data->GetVoxelGradient(xi[0], xi[1], xi[2], scalars, this->Gradients);
double v[3]; v[0] = v[1] = v[2] = 0.0;
for (int k = 0; k < 8; k++)
{
double *pg = this->Gradients->GetTuple(k);
v[0] += pg[0]*weights[k];
v[1] += pg[1]*weights[k];
v[2] += pg[2]*weights[k];
}
double grad = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
opacity *= gradientOpacity->GetValue(grad);
}
return opacity;
}
|