File: vtkCellPicker.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 118,880 kB
  • sloc: cpp: 1,442,792; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 103; objc: 17
file content (1501 lines) | stat: -rw-r--r-- 46,122 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkCellPicker.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkCellPicker.h"
#include "vtkObjectFactory.h"

#include "vtkCommand.h"
#include "vtkMath.h"
#include "vtkBox.h"
#include "vtkPiecewiseFunction.h"
#include "vtkPlaneCollection.h"
#include "vtkTransform.h"
#include "vtkDoubleArray.h"
#include "vtkPoints.h"
#include "vtkPolygon.h"
#include "vtkVoxel.h"
#include "vtkGenericCell.h"
#include "vtkPointData.h"
#include "vtkImageData.h"
#include "vtkActor.h"
#include "vtkMapper.h"
#include "vtkTexture.h"
#include "vtkVolume.h"
#include "vtkAbstractVolumeMapper.h"
#include "vtkVolumeProperty.h"
#include "vtkLODProp3D.h"
#include "vtkImageMapper3D.h"
#include "vtkRenderer.h"
#include "vtkCamera.h"
#include "vtkAbstractCellLocator.h"

vtkStandardNewMacro(vtkCellPicker);

//----------------------------------------------------------------------------
vtkCellPicker::vtkCellPicker()
{
  // List of locators for accelerating polydata picking
  this->Locators = vtkCollection::New();

  // For polydata picking
  this->Cell = vtkGenericCell::New();
  this->PointIds = vtkIdList::New();

  // For interpolation of volume gradients
  this->Gradients = vtkDoubleArray::New();
  this->Gradients->SetNumberOfComponents(3);
  this->Gradients->SetNumberOfTuples(8);

  // Miscellaneous ivars
  this->Tolerance = 1e-6;
  this->VolumeOpacityIsovalue = 0.05;
  this->UseVolumeGradientOpacity = 0;
  this->PickClippingPlanes = 0;
  this->PickTextureData = 0;

  // Clear all info returned by the pick
  this->ResetCellPickerInfo();
}

//----------------------------------------------------------------------------
vtkCellPicker::~vtkCellPicker()
{
  this->Gradients->Delete();
  this->Cell->Delete();
  this->PointIds->Delete();
  this->Locators->Delete();
}

//----------------------------------------------------------------------------
void vtkCellPicker::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "MapperNormal: (" <<  this->MapperNormal[0] << ","
     << this->MapperNormal[1] << "," << this->MapperNormal[2] << ")\n";

  os << indent << "PickNormal: (" <<  this->PickNormal[0] << ","
     << this->PickNormal[1] << "," << this->PickNormal[2] << ")\n";

  if ( this->Texture )
    {
    os << indent << "Texture: " << this->Texture << "\n";
    }
  else
    {
    os << indent << "Texture: (none)";
    }

  os << indent << "PickTextureData: "
     << (this->PickTextureData ? "On" : "Off") << "\n";

  os << indent << "PointId: " << this->PointId << "\n";
  os << indent << "CellId: " << this->CellId << "\n";
  os << indent << "SubId: " << this->SubId << "\n";
  os << indent << "PCoords: (" << this->PCoords[0] << ", "
     << this->PCoords[1] << ", " << this->PCoords[2] << ")\n";

  os << indent << "PointIJK: (" << this->PointIJK[0] << ", "
     << this->PointIJK[1] << ", " << this->PointIJK[2] << ")\n";
  os << indent << "CellIJK: (" << this->CellIJK[0] << ", "
     << this->CellIJK[1] << ", " << this->CellIJK[2] << ")\n";

  os << indent << "ClippingPlaneId: " << this->ClippingPlaneId << "\n";

  os << indent << "PickClippingPlanes: "
     << (this->PickClippingPlanes ? "On" : "Off") << "\n";

  os << indent << "VolumeOpacityIsovalue: " << this->VolumeOpacityIsovalue
     << "\n";
  os << indent << "UseVolumeGradientOpacity: "
     << (this->UseVolumeGradientOpacity ? "On" : "Off") << "\n";
}

//----------------------------------------------------------------------------
void vtkCellPicker::Initialize()
{
  this->ResetPickInfo();
  this->Superclass::Initialize();
}

//----------------------------------------------------------------------------
void vtkCellPicker::ResetPickInfo()
{
  // First, reset information from the superclass, since
  // vtkPicker does not have a ResetPickInfo method
  this->DataSet = 0;
  this->Mapper = 0;

  // Reset all the information specific to this class
  this->ResetCellPickerInfo();
}

//----------------------------------------------------------------------------
void vtkCellPicker::ResetCellPickerInfo()
{
  this->Texture = 0;

  this->ClippingPlaneId = -1;

  this->PointId = -1;
  this->CellId = -1;
  this->SubId = -1;

  this->PCoords[0] = 0.0;
  this->PCoords[1] = 0.0;
  this->PCoords[2] = 0.0;

  this->CellIJK[0] = 0;
  this->CellIJK[1] = 0;
  this->CellIJK[2] = 0;

  this->PointIJK[0] = 0;
  this->PointIJK[1] = 0;
  this->PointIJK[2] = 0;

  this->MapperNormal[0] = 0.0;
  this->MapperNormal[1] = 0.0;
  this->MapperNormal[2] = 1.0;

  this->PickNormal[0] = 0.0;
  this->PickNormal[1] = 0.0;
  this->PickNormal[2] = 1.0;
}

//----------------------------------------------------------------------------
void vtkCellPicker::AddLocator(vtkAbstractCellLocator *locator)
{
  if (!this->Locators->IsItemPresent(locator))
    {
    this->Locators->AddItem(locator);
    }
}

//----------------------------------------------------------------------------
void vtkCellPicker::RemoveLocator(vtkAbstractCellLocator *locator)
{
  this->Locators->RemoveItem(locator);
}

//----------------------------------------------------------------------------
void vtkCellPicker::RemoveAllLocators()
{
  this->Locators->RemoveAllItems();
}

//----------------------------------------------------------------------------
int vtkCellPicker::Pick(double selectionX, double selectionY,
                           double selectionZ, vtkRenderer *renderer)
{
  int pickResult = 0;

  if ( (pickResult = this->Superclass::Pick(selectionX, selectionY, selectionZ,
                                            renderer)) == 0)
    {
    // If no pick, set the PickNormal so that it points at the camera
    vtkCamera *camera = renderer->GetActiveCamera();
    double cameraPos[3];
    camera->GetPosition(cameraPos);

    if (camera->GetParallelProjection())
      {
      // For parallel projection, use -ve direction of projection
      double cameraFocus[3];
      camera->GetFocalPoint(cameraFocus);
      this->PickNormal[0] = cameraPos[0] - cameraFocus[0];
      this->PickNormal[1] = cameraPos[1] - cameraFocus[1];
      this->PickNormal[2] = cameraPos[2] - cameraFocus[2];
      }
    else
      {
      // Get the vector from pick position to the camera
      this->PickNormal[0] = cameraPos[0] - this->PickPosition[0];
      this->PickNormal[1] = cameraPos[1] - this->PickPosition[1];
      this->PickNormal[2] = cameraPos[2] - this->PickPosition[2];
      }

    vtkMath::Normalize(this->PickNormal);
    }

  return pickResult;
}

//----------------------------------------------------------------------------
// Tolerance for parametric coordinate matching an intersection with a plane
#define VTKCELLPICKER_PLANE_TOL 1e-14

double vtkCellPicker::IntersectWithLine(double p1[3], double p2[3],
                                          double tol,
                                          vtkAssemblyPath *path,
                                          vtkProp3D *prop,
                                          vtkAbstractMapper3D *m)
{
  vtkMapper *mapper = 0;
  vtkAbstractVolumeMapper *volumeMapper = 0;
  vtkImageMapper3D *imageMapper = 0;

  double tMin = VTK_DOUBLE_MAX;
  double t1 = 0.0;
  double t2 = 1.0;

  // Clip the ray with the mapper's ClippingPlanes and adjust t1, t2.
  // This limits the pick search to the inside of the clipped region.
  int clippingPlaneId = -1;
  if (m && !this->ClipLineWithPlanes(m, this->Transform->GetMatrix(),
                                     p1, p2, t1, t2, clippingPlaneId))
    {
    return VTK_DOUBLE_MAX;
    }

  // Initialize the pick position to the frontmost clipping plane
  if (this->PickClippingPlanes && clippingPlaneId >= 0)
    {
    tMin = t1;
    }

  // Volume
  else if ( (volumeMapper = vtkAbstractVolumeMapper::SafeDownCast(m)) )
    {
    tMin = this->IntersectVolumeWithLine(p1, p2, t1, t2, prop, volumeMapper);
    }

  // Image
  else if ( (imageMapper = vtkImageMapper3D::SafeDownCast(m)) )
    {
    tMin = this->IntersectImageWithLine(p1, p2, t1, t2, prop, imageMapper);
    }

  // Actor
  else if ( (mapper = vtkMapper::SafeDownCast(m)) )
    {
    tMin = this->IntersectActorWithLine(p1, p2, t1, t2, tol, prop, mapper);
    }

  // Unidentified Prop3D
  else
    {
    tMin = this->IntersectProp3DWithLine(p1, p2, t1, t2, tol, prop, m);
    }

  if (tMin < this->GlobalTMin)
    {
    this->GlobalTMin = tMin;
    this->SetPath(path);

    this->ClippingPlaneId = clippingPlaneId;

    // If tMin == t1, the pick didn't go past the first clipping plane,
    // so the position and normal will be set from the clipping plane.
    if (fabs(tMin - t1) < VTKCELLPICKER_PLANE_TOL && clippingPlaneId >= 0)
      {
      this->MapperPosition[0] = p1[0]*(1.0-t1) + p2[0]*t1;
      this->MapperPosition[1] = p1[1]*(1.0-t1) + p2[1]*t1;
      this->MapperPosition[2] = p1[2]*(1.0-t1) + p2[2]*t1;

      double plane[4];
      m->GetClippingPlaneInDataCoords(
        this->Transform->GetMatrix(), clippingPlaneId, plane);
      vtkMath::Normalize(plane);
      // Want normal outward from the planes, not inward
      this->MapperNormal[0] = -plane[0];
      this->MapperNormal[1] = -plane[1];
      this->MapperNormal[2] = -plane[2];
      }

    // The position comes from the data, so put it into world coordinates
    this->Transform->TransformPoint(this->MapperPosition, this->PickPosition);
    this->Transform->TransformNormal(this->MapperNormal, this->PickNormal);
    }

  return tMin;
}

//----------------------------------------------------------------------------
double vtkCellPicker::IntersectActorWithLine(const double p1[3],
                                               const double p2[3],
                                               double t1, double t2,
                                               double tol,
                                               vtkProp3D *prop,
                                               vtkMapper *mapper)
{
  // This code was taken from the original CellPicker with almost no
  // modification except for the locator and texture additions.

  // Intersect each cell with ray.  Keep track of one closest to
  // the eye (within the tolerance tol) and within the clipping range).
  // Note that we fudge the "closest to" (tMin+this->Tolerance) a little and
  // keep track of the cell with the best pick based on parametric
  // coordinate (pick the minimum, maximum parametric distance). This
  // breaks ties in a reasonable way when cells are the same distance
  // from the eye (like cells laying on a 2D plane).

  vtkDataSet *data = mapper->GetInput();
  double tMin = VTK_DOUBLE_MAX;
  double minPCoords[3];
  double pDistMin = VTK_DOUBLE_MAX;
  vtkIdType minCellId = -1;
  int minSubId = -1;
  double minXYZ[3];
  minXYZ[0] = minXYZ[1] = minXYZ[2] = 0.0;

  // Polydata has no 3D cells
  int isPolyData = data->IsA("vtkPolyData");

  vtkCollectionSimpleIterator iter;
  vtkAbstractCellLocator *locator = 0;
  this->Locators->InitTraversal(iter);
  while ( (locator = static_cast<vtkAbstractCellLocator *>(
           this->Locators->GetNextItemAsObject(iter))) )
    {
    if (locator->GetDataSet() == data)
      {
      break;
      }
    }

  // Make a new p1 and p2 using the clipped t1 and t2
  double q1[3], q2[3];
  q1[0] = p1[0]; q1[1] = p1[1]; q1[2] = p1[2];
  q2[0] = p2[0]; q2[1] = p2[1]; q2[2] = p2[2];
  if (t1 != 0.0 || t2 != 1.0)
    {
    for (int j = 0; j < 3; j++)
      {
      q1[j] = p1[j]*(1.0 - t1) + p2[j]*t1;
      q2[j] = p1[j]*(1.0 - t2) + p2[j]*t2;
      }
    }

  // Use the locator if one exists for this data
  if (locator)
    {
    if (!locator->IntersectWithLine(q1, q2, tol, tMin, minXYZ,
                                    minPCoords, minSubId, minCellId,
                                    this->Cell))
      {
      return VTK_DOUBLE_MAX;
      }

    // Stretch tMin out to the original range
    if (t1 != 0.0 || t2 != 1.0)
      {
      tMin = t1*(1.0 - tMin) + t2*tMin;
      }

    // If cell is a strip, then replace cell with a sub-cell
    this->SubCellFromCell(this->Cell, minSubId);
    }
  else
    {
    vtkIdList *pointIds = this->PointIds;
    vtkIdType numCells = data->GetNumberOfCells();

    for (vtkIdType cellId = 0; cellId < numCells; cellId++)
      {
      double t;
      double x[3];
      double pcoords[3];
      pcoords[0] = pcoords[1] = pcoords[2] = 0;
      int newSubId = -1;
      int numSubIds = 1;

      // If it is a strip, we need to iterate over the subIds
      int cellType = data->GetCellType(cellId);
      int useSubCells = this->HasSubCells(cellType);
      if (useSubCells)
        {
        // Get the pointIds for the strip and the length of the strip
        data->GetCellPoints(cellId, pointIds);
        numSubIds = this->GetNumberOfSubCells(pointIds, cellType);
        }

      // This will only loop once unless we need to deal with a strip
      for (int subId = 0; subId < numSubIds; subId++)
        {
        if (useSubCells)
          {
          // Get a sub-cell from a the strip
          this->GetSubCell(data, pointIds, subId, cellType, this->Cell);
          }
        else
          {
          data->GetCell(cellId, this->Cell);
          }

        int cellPicked = 0;
        if (isPolyData)
          {
          // Polydata can always be picked with original endpoints
          cellPicked = this->Cell->IntersectWithLine(
                         const_cast<double *>(p1), const_cast<double *>(p2),
                         tol, t, x, pcoords, newSubId);
          }
        else
          {
          // Any 3D cells need to be intersected with a line segment that
          // has been clipped with the clipping planes, in case one end is
          // actually inside the cell.
          cellPicked = this->Cell->IntersectWithLine(
                         q1, q2, tol, t, x, pcoords, newSubId);

          // Stretch t out to the original range
          if (t1 != 0.0 || t2 != 1.0)
            {
            t = t1*(1.0 - t) + t2*t;
            }
          }

        if (cellPicked && t <= (tMin + this->Tolerance) && t >= t1 && t <= t2)
          {
          double pDist = this->Cell->GetParametricDistance(pcoords);
          if (pDist < pDistMin || (pDist == pDistMin && t < tMin))
            {
            tMin = t;
            pDistMin = pDist;
            // save all of these
            minCellId = cellId;
            minSubId = newSubId;
            if (useSubCells)
              {
              minSubId = subId;
              }
            for (int k = 0; k < 3; k++)
              {
              minXYZ[k] = x[k];
              minPCoords[k] = pcoords[k];
              }
            } // for all subIds
          } // if minimum, maximum
        } // if a close cell
      } // for all cells
    }

  // Do this if a cell was intersected
  if (minCellId >= 0 && tMin < this->GlobalTMin)
    {
    this->ResetPickInfo();

    // Get the cell, convert to triangle if it is a strip
    vtkGenericCell *cell = this->Cell;

    // If we used a locator, we already have the picked cell
    if (!locator)
      {
      int cellType = data->GetCellType(minCellId);

      if (this->HasSubCells(cellType))
        {
        data->GetCellPoints(minCellId, this->PointIds);
        this->GetSubCell(data, this->PointIds, minSubId, cellType, cell);
        }
      else
        {
        data->GetCell(minCellId, cell);
        }
      }

    // Get the cell weights
    vtkIdType numPoints = cell->GetNumberOfPoints();
    double *weights = new double[numPoints];
    for (vtkIdType i = 0; i < numPoints; i++)
      {
      weights[i] = 0;
      }

    // Get the interpolation weights (point is thrown away)
    double point[3];
    cell->EvaluateLocation(minSubId, minPCoords, point, weights);

    this->Mapper = mapper;

    // Get the texture from the actor or the LOD
    vtkActor *actor = 0;
    vtkLODProp3D *lodActor = 0;
    if ( (actor = vtkActor::SafeDownCast(prop)) )
      {
      this->Texture = actor->GetTexture();
      }
    else if ( (lodActor = vtkLODProp3D::SafeDownCast(prop)) )
      {
      int lodId = lodActor->GetPickLODID();
      lodActor->GetLODTexture(lodId, &this->Texture);
      }

    if (this->PickTextureData && this->Texture)
      {
      // Return the texture's image data to the user
      vtkImageData *image = this->Texture->GetInput();
      this->DataSet = image;

      // Get and check the image dimensions
      int extent[6];
      image->GetExtent(extent);
      int dimensionsAreValid = 1;
      int dimensions[3];
      for (int i = 0; i < 3; i++)
        {
        dimensions[i] = extent[2*i + 1] - extent[2*i] + 1;
        dimensionsAreValid = (dimensionsAreValid && dimensions[i] > 0);
        }

      // Use the texture coord to set the information
      double tcoord[3];
      if (dimensionsAreValid &&
          this->ComputeSurfaceTCoord(data, cell, weights, tcoord))
        {
        // Take the border into account when computing coordinates
        double x[3];
        x[0] = extent[0] + tcoord[0]*dimensions[0] - 0.5;
        x[1] = extent[2] + tcoord[1]*dimensions[1] - 0.5;
        x[2] = extent[4] + tcoord[2]*dimensions[2] - 0.5;

        this->SetImageDataPickInfo(x, extent);
        }
      }
    else
      {
      // Return the polydata to the user
      this->DataSet = data;
      this->CellId = minCellId;
      this->SubId = minSubId;
      this->PCoords[0] = minPCoords[0];
      this->PCoords[1] = minPCoords[1];
      this->PCoords[2] = minPCoords[2];

      // Find the point with the maximum weight
      double maxWeight = 0;
      vtkIdType iMaxWeight = -1;
      for (vtkIdType i = 0; i < numPoints; i++)
        {
        if (weights[i] > maxWeight)
          {
          iMaxWeight = i;
          }
        }

      // If maximum weight is found, use it to get the PointId
      if (iMaxWeight != -1)
        {
        this->PointId = cell->PointIds->GetId(iMaxWeight);
        }
      }

    // Set the mapper position
    this->MapperPosition[0] = minXYZ[0];
    this->MapperPosition[1] = minXYZ[1];
    this->MapperPosition[2] = minXYZ[2];

    // Compute the normal
    if (!this->ComputeSurfaceNormal(data, cell, weights, this->MapperNormal))
      {
      // By default, the normal points back along view ray
      this->MapperNormal[0] = p1[0] - p2[0];
      this->MapperNormal[1] = p1[1] - p2[1];
      this->MapperNormal[2] = p1[2] - p2[2];
      vtkMath::Normalize(this->MapperNormal);
      }

    delete [] weights;
    }

  return tMin;
}

//----------------------------------------------------------------------------
// Intersect a vtkVolume with a line by ray casting.

// For algorithm stability: choose a tolerance that is larger than
// the expected roundoff error in computing the voxel indices from "t"
#define VTKCELLPICKER_VOXEL_TOL 1e-6

double vtkCellPicker::IntersectVolumeWithLine(const double p1[3],
                                                const double p2[3],
                                                double t1, double t2,
                                                vtkProp3D *prop,
                                                vtkAbstractVolumeMapper *mapper)
{
  vtkImageData *data = vtkImageData::SafeDownCast(mapper->GetDataSetInput());

  if (data == 0)
    {
    // This picker only works with image inputs
    return VTK_DOUBLE_MAX;
    }

  // Convert ray to structured coordinates
  double spacing[3], origin[3];
  int extent[6];
  data->GetSpacing(spacing);
  data->GetOrigin(origin);
  data->GetExtent(extent);

  double x1[3], x2[3];
  for (int i = 0; i < 3; i++)
    {
    x1[i] = (p1[i] - origin[i])/spacing[i];
    x2[i] = (p2[i] - origin[i])/spacing[i];
    }

  // Clip the ray with the extent, results go in s1 and s2
  int planeId;
  double s1, s2;
  if (!this->ClipLineWithExtent(extent, x1, x2, s1, s2, planeId))
    {
    return VTK_DOUBLE_MAX;
    }
  if (s1 >= t1) { t1 = s1; }
  if (s2 <= t2) { t2 = s2; }

  // Sanity check
  if (t2 < t1)
    {
    return VTK_DOUBLE_MAX;
    }

  // Get the property from the volume or the LOD
  vtkVolumeProperty *property = 0;
  vtkVolume *volume = 0;
  vtkLODProp3D *lodVolume = 0;
  if ( (volume = vtkVolume::SafeDownCast(prop)) )
    {
    property = volume->GetProperty();
    }
  else if ( (lodVolume = vtkLODProp3D::SafeDownCast(prop)) )
    {
    int lodId = lodVolume->GetPickLODID();
    lodVolume->GetLODProperty(lodId, &property);
    }

  // Get the theshold for the opacity
  double opacityThreshold = this->VolumeOpacityIsovalue;

  // Compute the length of the line intersecting the volume
  double rayLength = sqrt(vtkMath::Distance2BetweenPoints(x1, x2))*(t2 - t1);

  // This is the minimum increment that will be allowed
  double tTol = VTKCELLPICKER_VOXEL_TOL/rayLength*(t2 - t1);

  // Find out whether there are multiple components in the volume
  int numComponents = data->GetNumberOfScalarComponents();
  int independentComponents = 0;
  if (property)
    {
    independentComponents = property->GetIndependentComponents();
    }
  int numIndependentComponents = 1;
  if (independentComponents)
    {
    numIndependentComponents = numComponents;
    }

  // Create a scalar array, it will be needed later
  vtkDataArray *scalars = vtkDataArray::CreateDataArray(data->GetScalarType());
  scalars->SetNumberOfComponents(numComponents);
  vtkIdType scalarArraySize = numComponents*data->GetNumberOfPoints();
  int scalarSize = data->GetScalarSize();
  void *scalarPtr = data->GetScalarPointer();

  // Go through each volume component separately
  double tMin = VTK_DOUBLE_MAX;
  for (int component = 0; component < numIndependentComponents; component++)
    {
    vtkPiecewiseFunction *scalarOpacity =
      (property ? property->GetScalarOpacity(component) : 0);
    int disableGradientOpacity =
      (property ? property->GetDisableGradientOpacity(component) : 1);
    vtkPiecewiseFunction *gradientOpacity = 0;
    if (!disableGradientOpacity && this->UseVolumeGradientOpacity)
      {
      gradientOpacity = property->GetGradientOpacity(component);
      }

    // This is the component used to compute the opacity
    int oComponent = component;
    if (!independentComponents)
      {
      oComponent = numComponents - 1;
      }

    // Make a new array, shifted to the desired component
    scalars->SetVoidArray(static_cast<void *>(static_cast<char *>(scalarPtr)
                                              + scalarSize*oComponent),
                          scalarArraySize, 1);

    // Do a ray cast with linear interpolation.
    double opacity = 0.0;
    double lastOpacity = 0.0;
    double lastT = t1;
    double x[3];
    double pcoords[3];
    int xi[3];

    // Ray cast loop
    double t = t1;
    while (t <= t2)
      {
      for (int j = 0; j < 3; j++)
        {
        // "t" is the fractional distance between endpoints x1 and x2
        x[j] = x1[j]*(1.0 - t) + x2[j]*t;

        // Paranoia bounds check
        if (x[j] < extent[2*j]) { x[j] = extent[2*j]; }
        else if (x[j] > extent[2*j + 1]) { x[j] = extent[2*j+1]; }

        xi[j] = vtkMath::Floor(x[j]);
        pcoords[j] = x[j] - xi[j];
        }

      opacity = this->ComputeVolumeOpacity(xi, pcoords, data, scalars,
                                           scalarOpacity, gradientOpacity);

      // If the ray has crossed the isosurface, then terminate the loop
      if (opacity > opacityThreshold)
        {
        break;
        }

      lastT = t;
      lastOpacity = opacity;

      // Compute the next "t" value that crosses a voxel boundary
      t = 1.0;
      for (int k = 0; k < 3; k++)
        {
        // Skip dimension "k" if it is perpendicular to ray
        if (fabs(x2[k] - x1[k]) > VTKCELLPICKER_VOXEL_TOL*rayLength)
          {
          // Compute the previous coord along dimension "k"
          double lastX = x1[k]*(1.0 - lastT) + x2[k]*lastT;

          // Increment to next slice boundary along dimension "k",
          // including a tolerance value for stability in cases
          // where lastX is just less than an integer value.
          double nextX = 0;
          if (x2[k] > x1[k])
            {
            nextX = vtkMath::Floor(lastX + VTKCELLPICKER_VOXEL_TOL) + 1;
            }
          else
            {
            nextX = vtkMath::Ceil(lastX - VTKCELLPICKER_VOXEL_TOL) - 1;
            }

          // Compute the "t" value for this slice boundary
          double ttry = lastT + (nextX - lastX)/(x2[k] - x1[k]);
          if (ttry > lastT + tTol && ttry < t)
            {
            t = ttry;
            }
          }
        }
      } // End of "while (t <= t2)"

    // If the ray hit the isosurface, compute the isosurface position
    if (opacity > opacityThreshold)
      {
      // Backtrack to the actual surface position unless this was first step
      if (t > t1)
        {
        double f = (opacityThreshold - lastOpacity)/(opacity - lastOpacity);
        t = lastT*(1.0 - f) + t*f;
        for (int j = 0; j < 3; j++)
          {
          x[j] = x1[j]*(1.0 - t) + x2[j]*t;
          if (x[j] < extent[2*j]) { x[j] = extent[2*j]; }
          else if (x[j] > extent[2*j + 1]) { x[j] = extent[2*j+1]; }
          xi[j] = vtkMath::Floor(x[j]);
          pcoords[j] = x[j] - xi[j];
          }
        }

      // Check to see if this is the new global minimum
      if (t < tMin && t < this->GlobalTMin)
        {
        this->ResetPickInfo();
        tMin = t;

        this->Mapper = mapper;
        this->DataSet = data;

        this->SetImageDataPickInfo(x, extent);

        this->MapperPosition[0] = x[0]*spacing[0] + origin[0];
        this->MapperPosition[1] = x[1]*spacing[1] + origin[1];
        this->MapperPosition[2] = x[2]*spacing[2] + origin[2];

        // Default the normal to the view-plane normal.  This default
        // will be used if the gradient cannot be computed any other way.
        this->MapperNormal[0] = p1[0] - p2[0];
        this->MapperNormal[1] = p1[1] - p2[1];
        this->MapperNormal[2] = p1[2] - p2[2];
        vtkMath::Normalize(this->MapperNormal);

        // Check to see if this is the first step, which means that this
        // is the boundary of the volume.  If this is the case, use the
        // normal of the boundary.
        if (t == t1 && planeId >= 0 && xi[planeId/2] == extent[planeId])
          {
          this->MapperNormal[0] = 0.0;
          this->MapperNormal[1] = 0.0;
          this->MapperNormal[2] = 0.0;
          this->MapperNormal[planeId/2] = 2.0*(planeId%2) - 1.0;
          if (spacing[planeId/2] < 0)
            {
            this->MapperNormal[planeId/2] = - this->MapperNormal[planeId/2];
            }
          }
        else
          {
          // Set the normal from the direction of the gradient
          int *ci = this->CellIJK;
          double weights[8];
          vtkVoxel::InterpolationFunctions(this->PCoords, weights);
          data->GetVoxelGradient(ci[0], ci[1], ci[2], scalars,
                                 this->Gradients);
          double v[3]; v[0] = v[1] = v[2] = 0.0;
          for (int k = 0; k < 8; k++)
            {
            double *pg = this->Gradients->GetTuple(k);
            v[0] += pg[0]*weights[k];
            v[1] += pg[1]*weights[k];
            v[2] += pg[2]*weights[k];
            }

          double norm = vtkMath::Norm(v);
          if (norm > 0)
            {
            this->MapperNormal[0] = v[0]/norm;
            this->MapperNormal[1] = v[1]/norm;
            this->MapperNormal[2] = v[2]/norm;
            }
          }
        } // End of "if (opacity > opacityThreshold)"
      } // End of "if (t < tMin && t < this->GlobalTMin)"
    } // End of loop over volume components

  scalars->Delete();

  return tMin;
}

//----------------------------------------------------------------------------
double vtkCellPicker::IntersectImageWithLine(const double p1[3],
                                             const double p2[3],
                                             double t1, double t2,
                                             vtkProp3D *prop,
                                             vtkImageMapper3D *imageMapper)
{
  // Get the image information
  vtkImageData *data = imageMapper->GetInput();
  double spacing[3], origin[3];
  int extent[6];
  data->GetSpacing(spacing);
  data->GetOrigin(origin);
  data->GetExtent(extent);

  // Get the plane equation for the slice
  double normal[4];
  imageMapper->GetSlicePlaneInDataCoords(prop->GetMatrix(), normal);

  // Point the normal towards camera
  if (normal[0]*(p1[0] - p2[0]) +
      normal[1]*(p1[1] - p2[1]) +
      normal[2]*(p1[2] - p2[2]) < 0)
    {
    normal[0] = -normal[0];
    normal[1] = -normal[1];
    normal[2] = -normal[2];
    normal[3] = -normal[3];
    }

  // And finally convert normal to structured coords
  double xnormal[4];
  xnormal[0] = normal[0]*spacing[0];
  xnormal[1] = normal[1]*spacing[1];
  xnormal[2] = normal[2]*spacing[2];
  xnormal[3] = normal[3] + vtkMath::Dot(origin, normal);
  double l = vtkMath::Norm(xnormal);
  xnormal[0] /= l;
  xnormal[1] /= l;
  xnormal[2] /= l;
  xnormal[3] /= l;

  // Also convert ray to structured coords
  double x1[3], x2[3];
  for (int i = 0; i < 3; i++)
    {
    x1[i] = (p1[i] - origin[i])/spacing[i];
    x2[i] = (p2[i] - origin[i])/spacing[i];
    }

  // Get the bounds to discover any cropping that has been applied
  double bounds[6];
  imageMapper->GetBounds(bounds);

  // Convert bounds to structured coords
  for (int k = 0; k < 3; k++)
    {
    bounds[2*k] = (bounds[2*k] - origin[k])/spacing[k];
    bounds[2*k+1] = (bounds[2*k+1] - origin[k])/spacing[k];
    // It should be a multiple of 0.5, so round to closest multiple of 0.5
    // (this reduces the impact of roundoff error from the above computation)
    bounds[2*k] = 0.5*vtkMath::Round(2.0*(bounds[2*k]));
    bounds[2*k+1] = 0.5*vtkMath::Round(2.0*(bounds[2*k+1]));
    // Reverse if spacing is negative
    if (spacing[k] < 0)
      {
      double bt = bounds[2*k];
      bounds[2*k] = bounds[2*k+1];
      bounds[2*k+1] = bt;
      }
    }

  // Clip the ray with the extent
  int planeId, plane2Id;
  double tMin, tMax;
  if (!vtkBox::IntersectWithLine(bounds, x1, x2, tMin, tMax, 0, 0,
        planeId, plane2Id))
    {
    return VTK_DOUBLE_MAX;
    }

  if (tMin != tMax)
    {
    // Intersect the ray with the slice plane
    double w1 = vtkMath::Dot(x1, xnormal) + xnormal[3];
    double w2 = vtkMath::Dot(x2, xnormal) + xnormal[3];
    if (w1*w2 > VTKCELLPICKER_VOXEL_TOL)
      {
      return VTK_DOUBLE_MAX;
      }
    if (w1*w2 < 0)
      {
      tMin = w1/(w1 - w2);
      }
    }

  // Make sure that intersection is within clipping planes
  if (tMin < t1 || tMin > t2)
    {
    return VTK_DOUBLE_MAX;
    }

  if (tMin < this->GlobalTMin)
    {
    // Compute the pick position in structured coords
    double x[3];
    for (int j = 0; j < 3; j++)
      {
      x[j] = x1[j]*(1.0 - tMin) + x2[j]*tMin;

      // Do a bounds check.  If beyond tolerance of bound, then
      // pick failed, but if within tolerance, clamp the coord
      // to the bound for robustness against roundoff errors.
      if (x[j] < bounds[2*j])
        {
        if (x[j] < bounds[2*j] - VTKCELLPICKER_VOXEL_TOL)
          {
          return VTK_DOUBLE_MAX;
          }
        x[j] = bounds[2*j];
        }
      else if (x[j] > bounds[2*j+1])
        {
        if (x[j] > bounds[2*j+1] + VTKCELLPICKER_VOXEL_TOL)
          {
          return VTK_DOUBLE_MAX;
          }
        x[j] = bounds[2*j + 1];
        }
      }

    this->ResetPickInfo();
    this->Mapper = imageMapper;
    this->DataSet = data;

    // Compute all the pick values
    this->SetImageDataPickInfo(x, extent);

    this->MapperPosition[0] = origin[0] + x[0]*spacing[0];
    this->MapperPosition[1] = origin[1] + x[1]*spacing[1];
    this->MapperPosition[2] = origin[2] + x[2]*spacing[2];

    // Set the normal in mapper coordinates
    this->MapperNormal[0] = normal[0];
    this->MapperNormal[1] = normal[1];
    this->MapperNormal[2] = normal[2];
    }

  return tMin;
}

//----------------------------------------------------------------------------
// This is a catch-all for Prop3D types that vtkCellPicker does not
// recognize.  It can be overridden in subclasses to provide support
// for picking new Prop3D types.

double vtkCellPicker::IntersectProp3DWithLine(const double *, const double *,
                                              double, double, double,
                                              vtkProp3D *,
                                              vtkAbstractMapper3D *)
{
  return VTK_DOUBLE_MAX;
}

//----------------------------------------------------------------------------
// Clip a line with a collection of clipping planes, or return zero if
// the line does not intersect the volume enclosed by the planes.
// The result of the clipping is retured in t1 and t2, which will have
// values between 0 and 1.  The index of the frontmost intersected plane is
// returned in planeId.

int vtkCellPicker::ClipLineWithPlanes(vtkAbstractMapper3D *mapper,
                                      vtkMatrix4x4 *mat,
                                      const double p1[3], const double p2[3],
                                      double &t1, double &t2, int& planeId)
{
  // The minPlaneId is the index of the plane that t1 lies on
  planeId = -1;
  t1 = 0.0;
  t2 = 1.0;

  double plane[4];
  int numClipPlanes = mapper->GetNumberOfClippingPlanes();
  for (int i = 0; i < numClipPlanes; i++)
    {
    mapper->GetClippingPlaneInDataCoords(mat, i, plane);

    double d1 = plane[0]*p1[0] + plane[1]*p1[1] + plane[2]*p1[2] + plane[3];
    double d2 = plane[0]*p2[0] + plane[1]*p2[1] + plane[2]*p2[2] + plane[3];

    // If both distances are negative, both points are outside
    if (d1 < 0 && d2 < 0)
      {
      return 0;
      }
    // If only one of the distances is negative, the line crosses the plane
    else if (d1 < 0 || d2 < 0)
      {
      // Compute fractional distance "t" of the crossing between p1 & p2
      double t = 0.0;

      // The "if" here just avoids an expensive division when possible
      if (d1 != 0)
        {
        // We will never have d1==d2 since they have different signs
        t = d1/(d1 - d2);
        }

      // If point p1 was clipped, adjust t1
      if (d1 < 0)
        {
        if (t >= t1)
          {
          t1 = t;
          planeId = i;
          }
        }
      // else point p2 was clipped, so adjust t2
      else
        {
        if (t <= t2)
          {
          t2 = t;
          }
        }

      // If this happens, there's no line left
      if (t1 > t2)
        {
        return 0;
        }
      }
    }

  return 1;
}

//----------------------------------------------------------------------------
// Clip a line in structured coordinates with an extent.  If the line
// does not intersect the extent, the return value will be zero.
// The fractional position of the new x1 with respect to the original line
// is returned in tMin, and the index of the frontmost intersected plane
// is returned in planeId.  The planes are ordered as follows:
// xmin, xmax, ymin, ymax, zmin, zmax.

int vtkCellPicker::ClipLineWithExtent(const int extent[6],
                                      const double x1[3], const double x2[3],
                                      double &t1, double &t2, int &planeId)
{
  double bounds[6];
  bounds[0] = extent[0]; bounds[1] = extent[1]; bounds[2] = extent[2];
  bounds[3] = extent[3]; bounds[4] = extent[4]; bounds[5] = extent[5];

  int p2;
  return vtkBox::IntersectWithLine(bounds, x1, x2, t1, t2, 0, 0, planeId, p2);
}

//----------------------------------------------------------------------------
// Compute the cell normal either by interpolating the point normals,
// or by computing the plane normal for 2D cells.

int vtkCellPicker::ComputeSurfaceNormal(vtkDataSet *data, vtkCell *cell,
                                          const double *weights,
                                          double normal[3])
{
  vtkDataArray *normals = data->GetPointData()->GetNormals();

  if (normals)
    {
    normal[0] = normal[1] = normal[2] = 0.0;
    double pointNormal[3];
    vtkIdType numPoints = cell->GetNumberOfPoints();
    for (vtkIdType k = 0; k < numPoints; k++)
      {
      normals->GetTuple(cell->PointIds->GetId(k), pointNormal);
      normal[0] += pointNormal[0]*weights[k];
      normal[1] += pointNormal[1]*weights[k];
      normal[2] += pointNormal[2]*weights[k];
      }
    vtkMath::Normalize(normal);
    }
  else if (cell->GetCellDimension() == 2)
    {
    vtkPolygon::ComputeNormal(cell->Points, normal);
    }
  else
    {
    return 0;
    }

  return 1;
}

//----------------------------------------------------------------------------
// Use weights to compute the texture coordinates of a point on the cell.

int vtkCellPicker::ComputeSurfaceTCoord(vtkDataSet *data, vtkCell *cell,
                                           const double *weights,
                                           double tcoord[3])
{
  vtkDataArray *tcoords = data->GetPointData()->GetTCoords();

  if (tcoords)
    {
    tcoord[0] = tcoord[1] = tcoord[2] = 0.0;
    double pointTCoord[3];

    int numComponents = tcoords->GetNumberOfComponents();
    vtkIdType numPoints = cell->GetNumberOfPoints();
    for (vtkIdType k = 0; k < numPoints; k++)
      {
      tcoords->GetTuple(cell->PointIds->GetId(k), pointTCoord);
      for (int i = 0; i < numComponents; i++)
        {
        tcoord[i] += pointTCoord[i]*weights[k];
        }
      }

    return 1;
    }

  return 0;
}

//----------------------------------------------------------------------------
// Do an in-place replacement of a cell with a subcell of that cell
void vtkCellPicker::SubCellFromCell(vtkGenericCell *cell, int subId)
{
  switch(cell->GetCellType())
    {
    case VTK_TRIANGLE_STRIP:
      {
      static int idx[2][3]={{0,1,2},{1,0,2}};
      int *order = idx[subId & 1];
      vtkIdType pointIds[3];
      double points[3][3];

      pointIds[0] = cell->PointIds->GetId(subId + order[0]);
      pointIds[1] = cell->PointIds->GetId(subId + order[1]);
      pointIds[2] = cell->PointIds->GetId(subId + order[2]);

      cell->Points->GetPoint(subId + order[0], points[0]);
      cell->Points->GetPoint(subId + order[1], points[1]);
      cell->Points->GetPoint(subId + order[2], points[2]);

      cell->SetCellTypeToTriangle();

      cell->PointIds->SetId(0, pointIds[0]);
      cell->PointIds->SetId(1, pointIds[1]);
      cell->PointIds->SetId(2, pointIds[2]);

      cell->Points->SetPoint(0, points[0]);
      cell->Points->SetPoint(1, points[1]);
      cell->Points->SetPoint(2, points[2]);
      }
      break;

    case VTK_POLY_LINE:
      {
      vtkIdType pointIds[2];
      double points[2][3];

      pointIds[0] = cell->PointIds->GetId(subId);
      pointIds[1] = cell->PointIds->GetId(subId + 1);

      cell->Points->GetPoint(subId, points[0]);
      cell->Points->GetPoint(subId + 1, points[1]);

      cell->SetCellTypeToLine();

      cell->PointIds->SetId(0, pointIds[0]);
      cell->PointIds->SetId(1, pointIds[1]);

      cell->Points->SetPoint(0, points[0]);
      cell->Points->SetPoint(1, points[1]);
      }
      break;

    case VTK_POLY_VERTEX:
      {
      double point[3];

      vtkIdType pointId = cell->PointIds->GetId(subId);
      cell->Points->GetPoint(subId, point);

      cell->SetCellTypeToVertex();

      cell->PointIds->SetId(0, pointId);
      cell->Points->SetPoint(0, point);
      }
      break;
   }
}

//----------------------------------------------------------------------------
int vtkCellPicker::HasSubCells(int cellType)
{
  switch (cellType)
    {
    case VTK_TRIANGLE_STRIP:
    case VTK_POLY_LINE:
    case VTK_POLY_VERTEX:
      return 1;
    }

  return 0;
}

//----------------------------------------------------------------------------
// Extract a single subcell from a cell in a data set
int vtkCellPicker::GetNumberOfSubCells(vtkIdList *pointIds, int cellType)
{
  switch (cellType)
    {
    case VTK_TRIANGLE_STRIP:
      return pointIds->GetNumberOfIds() - 2;

    case VTK_POLY_LINE:
      return pointIds->GetNumberOfIds() - 1;

    case VTK_POLY_VERTEX:
      return pointIds->GetNumberOfIds();
    }

  return 0;
}

//----------------------------------------------------------------------------
// Extract a single subcell from a cell in a data set.  This method
// requires a vtkIdList that contains the pointIds for the cell.
void vtkCellPicker::GetSubCell(vtkDataSet *data, vtkIdList *ptIds, int subId,
                               int cellType, vtkGenericCell *cell)
{
  switch(cellType)
    {
    case VTK_TRIANGLE_STRIP:
      {
      static int idx[2][3]={{0,1,2},{1,0,2}};
      int *order = idx[subId & 1];
      vtkIdType pointIds[3];
      double points[3][3];

      pointIds[0] = ptIds->GetId(subId + order[0]);
      pointIds[1] = ptIds->GetId(subId + order[1]);
      pointIds[2] = ptIds->GetId(subId + order[2]);

      data->GetPoint(pointIds[0], points[0]);
      data->GetPoint(pointIds[1], points[1]);
      data->GetPoint(pointIds[2], points[2]);

      cell->SetCellTypeToTriangle();

      cell->PointIds->SetId(0, pointIds[0]);
      cell->PointIds->SetId(1, pointIds[1]);
      cell->PointIds->SetId(2, pointIds[2]);

      cell->Points->SetPoint(0, points[0]);
      cell->Points->SetPoint(1, points[1]);
      cell->Points->SetPoint(2, points[2]);
      }
      break;

    case VTK_POLY_LINE:
      {
      vtkIdType pointIds[2];
      double points[2][3];

      pointIds[0] = ptIds->GetId(subId);
      pointIds[1] = ptIds->GetId(subId + 1);

      data->GetPoint(pointIds[0], points[0]);
      data->GetPoint(pointIds[1], points[1]);

      cell->SetCellTypeToLine();

      cell->PointIds->SetId(0, pointIds[0]);
      cell->PointIds->SetId(1, pointIds[1]);

      cell->Points->SetPoint(0, points[0]);
      cell->Points->SetPoint(1, points[1]);
      }
      break;

    case VTK_POLY_VERTEX:
      {
      double point[3];

      vtkIdType pointId = ptIds->GetId(subId);
      data->GetPoint(pointId, point);

      cell->SetCellTypeToVertex();

      cell->PointIds->SetId(0, pointId);
      cell->Points->SetPoint(0, point);
      }
      break;
    }
}

//----------------------------------------------------------------------------
// Set all Cell and Point information, given a structured coordinate
// and the extent of the data.

void vtkCellPicker::SetImageDataPickInfo(const double x[3],
                                            const int extent[6])
{
  for (int j = 0; j < 3; j++)
    {
    double xj = x[j];
    if (xj < extent[2*j]) { xj = extent[2*j]; }
    if (xj > extent[2*j+1]) { xj = extent[2*j+1]; }

    this->CellIJK[j] = vtkMath::Floor(xj);
    this->PCoords[j] = xj - this->CellIJK[j];
    // Keep the cell in-bounds if it is on the edge
    if (this->CellIJK[j] == extent[2*j+1] &&
        this->CellIJK[j] > extent[2*j])
      {
      this->CellIJK[j] -= 1;
      this->PCoords[j] = 1.0;
      }
    this->PointIJK[j] = this->CellIJK[j] + (this->PCoords[j] >= 0.5);
    }

  // Stupid const/non-const, and I hate const_cast
  int ext[6];
  ext[0] = extent[0]; ext[1] = extent[1];
  ext[2] = extent[2]; ext[3] = extent[3];
  ext[4] = extent[4]; ext[5] = extent[5];

  this->PointId =
    vtkStructuredData::ComputePointIdForExtent(ext, this->PointIJK);

  this->CellId =
    vtkStructuredData::ComputeCellIdForExtent(ext, this->CellIJK);

  this->SubId = 0;
}

//----------------------------------------------------------------------------
// Given a structured position within the volume, and the point scalars,
// compute the local opacity of the volume.

double vtkCellPicker::ComputeVolumeOpacity(
  const int xi[3], const double pcoords[3],
  vtkImageData *data, vtkDataArray *scalars,
  vtkPiecewiseFunction *scalarOpacity, vtkPiecewiseFunction *gradientOpacity)
{
  double opacity = 1.0;

  // Get interpolation weights from the pcoords
  double weights[8];
  vtkVoxel::InterpolationFunctions(const_cast<double *>(pcoords), weights);

  // Get the volume extent to avoid out-of-bounds
  int extent[6];
  data->GetExtent(extent);
  int scalarType = data->GetScalarType();

  // Compute the increments for the three directions, checking the bounds
  vtkIdType xInc = 1;
  vtkIdType yInc = extent[1] - extent[0] + 1;
  vtkIdType zInc = yInc*(extent[3] - extent[2] + 1);
  if (xi[0] == extent[1]) { xInc = 0; }
  if (xi[1] == extent[3]) { yInc = 0; }
  if (xi[2] == extent[5]) { zInc = 0; }

  // Use the increments and weights to interpolate the data
  vtkIdType ptId = data->ComputePointId(const_cast<int *>(xi));
  double val = 0.0;
  for (int j = 0; j < 8; j++)
    {
    vtkIdType ptInc = (j & 1)*xInc + ((j>>1) & 1)*yInc + ((j>>2) & 1)*zInc;
    val += weights[j]*scalars->GetComponent(ptId + ptInc, 0);
    }

  // Compute the ScalarOpacity
  if (scalarOpacity)
    {
    opacity *= scalarOpacity->GetValue(val);
    }
  else if (scalarType == VTK_FLOAT || scalarType == VTK_DOUBLE)
    {
    opacity *= val;
    }
  else
    {
    // Assume unsigned char
    opacity *= val/255.0;
    }

  // Compute gradient and GradientOpacity
  if (gradientOpacity)
    {
    data->GetVoxelGradient(xi[0], xi[1], xi[2], scalars, this->Gradients);
    double v[3]; v[0] = v[1] = v[2] = 0.0;
    for (int k = 0; k < 8; k++)
      {
      double *pg = this->Gradients->GetTuple(k);
      v[0] += pg[0]*weights[k];
      v[1] += pg[1]*weights[k];
      v[2] += pg[2]*weights[k];
      }
    double grad = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
    opacity *= gradientOpacity->GetValue(grad);
    }

  return opacity;
}