1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkFrustumCoverageCuller.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkFrustumCoverageCuller.h"
#include "vtkCamera.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkProp.h"
#include "vtkRenderer.h"
vtkStandardNewMacro(vtkFrustumCoverageCuller);
// Create a frustum coverage culler with default values
vtkFrustumCoverageCuller::vtkFrustumCoverageCuller()
{
this->MinimumCoverage = 0.0;
this->MaximumCoverage = 1.0;
this->SortingStyle = VTK_CULLER_SORT_NONE;
}
// The coverage is computed for each prop, and a resulting allocated
// render time is computed. This is multiplied by the current allocated
// render time of the prop. After this, props with no allocated time are
// removed from the list (and the list length is shortened) to make sure
// that they are not considered again by another culler or for rendering.
double vtkFrustumCoverageCuller::Cull( vtkRenderer *ren,
vtkProp **propList,
int& listLength,
int& initialized )
{
vtkProp *prop;
double total_time;
double *bounds, center[3];
double radius = 0.0;
double planes[24], d;
double coverage, screen_bounds[4];
double previous_time;
int i, propLoop;
double full_w, full_h, part_w, part_h;
double *allocatedTimeList;
double *distanceList;
int index1, index2;
double tmp;
// We will create a center distance entry for each prop in the list
// If SortingStyle is set to BackToFront or FrontToBack we will then
// sort the props that have a non-zero AllocatedRenderTime by their
// center distance
distanceList = new double[listLength];
// We will return the total time of all props. This is used for
// normalization.
total_time = 0;
// Get the view frustum planes from the active camera
ren->GetActiveCamera()->GetFrustumPlanes(
ren->GetTiledAspectRatio(), planes );
// Keep a list of allocated times to help with sorting / removing
// props later
allocatedTimeList = new double[listLength];
// For each prop, compute coverage
for ( propLoop = 0; propLoop < listLength; propLoop++ )
{
// Get the prop out of the list
prop = propList[propLoop];
// If allocated render time has not been initialized yet (if this
// is the first culler, it hasn't) then the previous time is set
// to 0.0
if ( !initialized )
{
previous_time = 1.0;
}
else
{
previous_time = prop->GetRenderTimeMultiplier();
}
// Get the bounds of the prop and compute an enclosing sphere
bounds = prop->GetBounds();
// We start with a coverage of 1.0 and set it to zero if the prop
// is culled during the plane tests
coverage = 1.0;
// make sure the bounds are defined - they won't be for a 2D prop which
// means that they will never be culled. Maybe this should be changed in
// the future?
if (bounds)
{
// a duff dataset like a polydata with no cells will have bad bounds
if (!vtkMath::AreBoundsInitialized(bounds))
{
coverage = 0.0;
}
else
{
center[0] = (bounds[0] + bounds[1]) / 2.0;
center[1] = (bounds[2] + bounds[3]) / 2.0;
center[2] = (bounds[4] + bounds[5]) / 2.0;
radius = 0.5 * sqrt( ( bounds[1] - bounds[0] ) *
( bounds[1] - bounds[0] ) +
( bounds[3] - bounds[2] ) *
( bounds[3] - bounds[2] ) +
( bounds[5] - bounds[4] ) *
( bounds[5] - bounds[4] ) );
for ( i = 0; i < 6; i++ )
{
// Compute how far the center of the sphere is from this plane
d =
planes[i*4 + 0] * center[0] +
planes[i*4 + 1] * center[1] +
planes[i*4 + 2] * center[2] +
planes[i*4 + 3];
// If d < -radius the prop is not within the view frustum
if ( d < -radius )
{
coverage = 0.0;
i = 7;
}
// The first four planes are the ones bounding the edges of the
// view plane (the last two are the near and far planes) The
// distance from the edge of the sphere to these planes is stored
// to compute coverage.
if ( i < 4 )
{
screen_bounds[i] = d - radius;
}
// The fifth plane is the near plane - use the distance to
// the center (d) as the value to sort by
if ( i == 4 )
{
distanceList[propLoop] = d;
}
}
}
// If the prop wasn't culled during the plane tests...
if ( coverage > 0.0 )
{
// Compute the width and height of this slice through the
// view frustum that contains the center of the sphere
full_w = screen_bounds[0] + screen_bounds[1] + 2.0 * radius;
full_h = screen_bounds[2] + screen_bounds[3] + 2.0 * radius;
// Subtract from the full width to get the width of the square
// enclosing the circle slice from the sphere in the plane
// through the center of the sphere. If the screen bounds for
// the left and right planes (0,1) are greater than zero, then
// the edge of the sphere was a positive distance away from the
// plane, so there is a gap between the edge of the plane and
// the edge of the box.
part_w = full_w;
if ( screen_bounds[0] > 0.0 )
{
part_w -= screen_bounds[0];
}
if ( screen_bounds[1] > 0.0 )
{
part_w -= screen_bounds[1];
}
// Do the same thing for the height with the top and bottom
// planes (2,3).
part_h = full_h;
if ( screen_bounds[2] > 0.0 )
{
part_h -= screen_bounds[2];
}
if ( screen_bounds[3] > 0.0 )
{
part_h -= screen_bounds[3];
}
// Prevent a single point from being culled if we
// are not culling based on screen coverage
if ( ((full_w*full_h == 0.0) ||
(part_w*part_h/(full_w*full_h) <= 0.0)) && this->MinimumCoverage == 0.0 )
{
coverage = 0.0001;
}
// Compute the fraction of coverage
else if ((full_w * full_h)!=0.0)
{
coverage = (part_w * part_h) / (full_w * full_h);
}
else
{
coverage = 0;
}
// Convert this to an allocated render time - coverage less than
// the minimum result in 0.0 time, greater than the maximum result in
// 1.0 time, and in between a linear ramp is used
if ( coverage < this->MinimumCoverage )
{
coverage = 0;
}
else if ( coverage > this->MaximumCoverage )
{
coverage = 1.0;
}
else
{
coverage = (coverage-this->MinimumCoverage) /
this->MaximumCoverage;
}
}
}
// This is a 2D prop - keep them at the beginning of the list in the same
// order they came in (by giving them all the same distance) and set
// the coverage to something small so that they won't get much
// allocated render time (because they aren't LOD it doesn't matter,
// and they generally do draw fast so you don't want to take too much
// time away from the 3D prop because you added a title to your
// window for example) They are put at the beginning of the list so
// that when sorted back to front they will be rendered last.
else
{
distanceList[propLoop] = -VTK_DOUBLE_MAX;
coverage = 0.001;
}
// Multiply the new allocated time by the previous allocated time
coverage *= previous_time;
prop->SetRenderTimeMultiplier( coverage );
// Save this in our array of allocated times which matches the
// prop array. Also save the center distance
allocatedTimeList[propLoop] = coverage;
// Add the time for this prop to the total time
total_time += coverage;
}
// Now traverse the list from the beginning, swapping any zero entries back
// in the list, while preserving the order of the non-zero entries. This
// requires two indices for the two items we are comparing at any step.
// The second index always moves back by one, but the first index moves back
// by one only when it is pointing to something that has a non-zero value.
index1 = 0;
for ( index2 = 1; index2 < listLength; index2++ )
{
if ( allocatedTimeList[index1] == 0.0 )
{
if ( allocatedTimeList[index2] != 0.0 )
{
allocatedTimeList[index1] = allocatedTimeList[index2];
distanceList[index1] = distanceList[index2];
propList[index1] = propList[index2];
propList[index2] = NULL;
allocatedTimeList[index2] = 0.0;
distanceList[index2] = 0.0;
}
else
{
propList[index1] = propList[index2] = NULL;
allocatedTimeList[index1] = allocatedTimeList[index2] = 0.0;
distanceList[index1] = distanceList[index2] = 0.0;
}
}
if ( allocatedTimeList[index1] != 0.0 )
{
index1++;
}
}
// Compute the new list length - index1 is always pointing to the
// first 0.0 entry or the last entry if none were zero (in which case
// we won't change the list length)
listLength = (allocatedTimeList[index1] == 0.0)?(index1):listLength;
// Now reorder the list if sorting is on
// Do it by a simple bubble sort - there probably aren't that
// many props....
if ( this->SortingStyle == VTK_CULLER_SORT_FRONT_TO_BACK )
{
for ( propLoop = 1; propLoop < listLength; propLoop++ )
{
index1 = propLoop;
while ( (index1 - 1) >= 0 &&
distanceList[index1] < distanceList[index1-1] )
{
tmp = distanceList[index1-1];
distanceList[index1-1] = distanceList[index1];
distanceList[index1] = tmp;
prop = propList[index1-1];
propList[index1-1] = propList[index1];
propList[index1] = prop;
index1--;
}
}
}
if ( this->SortingStyle == VTK_CULLER_SORT_BACK_TO_FRONT )
{
for ( propLoop = 1; propLoop < listLength; propLoop++ )
{
index1 = propLoop;
while ( (index1 - 1) >= 0 &&
distanceList[index1] > distanceList[index1-1] )
{
tmp = distanceList[index1-1];
distanceList[index1-1] = distanceList[index1];
distanceList[index1] = tmp;
prop = propList[index1-1];
propList[index1-1] = propList[index1];
propList[index1] = prop;
index1--;
}
}
}
// The allocated render times are now initialized
initialized = 1;
delete [] allocatedTimeList;
delete [] distanceList;
return total_time;
}
// Description:
// Return the sorting style as a descriptive character string.
const char *vtkFrustumCoverageCuller::GetSortingStyleAsString(void)
{
if( this->SortingStyle == VTK_CULLER_SORT_NONE )
{
return "None";
}
if( this->SortingStyle == VTK_CULLER_SORT_FRONT_TO_BACK )
{
return "Front To Back";
}
if( this->SortingStyle == VTK_CULLER_SORT_BACK_TO_FRONT )
{
return "Back To Front";
}
else
{
return "Unknown";
}
}
void vtkFrustumCoverageCuller::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Minimum Coverage: "
<< this->MinimumCoverage << endl;
os << indent << "Maximum Coverage: "
<< this->MaximumCoverage << endl;
os << indent << "Sorting Style: "
<< this->GetSortingStyleAsString() << endl;
}
|