File: vtkVolumeOutlineSource.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 118,880 kB
  • sloc: cpp: 1,442,792; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 103; objc: 17
file content (762 lines) | stat: -rw-r--r-- 22,948 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVolumeOutlineSource.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkVolumeOutlineSource.h"

#include "vtkDataSet.h"
#include "vtkDemandDrivenPipeline.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkImageData.h"
#include "vtkPolyData.h"
#include "vtkPoints.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkUnsignedCharArray.h"
#include "vtkVolumeMapper.h"
#include "vtkMath.h"

vtkStandardNewMacro(vtkVolumeOutlineSource);

vtkCxxSetObjectMacro(vtkVolumeOutlineSource,VolumeMapper,vtkVolumeMapper);

//----------------------------------------------------------------------------
vtkVolumeOutlineSource::vtkVolumeOutlineSource ()
{
  this->VolumeMapper = 0;
  this->GenerateScalars = 0;
  this->GenerateOutline = 1;
  this->GenerateFaces = 0;
  this->ActivePlaneId = -1;

  this->Color[0] = 1.0;
  this->Color[1] = 0.0;
  this->Color[2] = 0.0;

  this->ActivePlaneColor[0] = 1.0;
  this->ActivePlaneColor[1] = 1.0;
  this->ActivePlaneColor[2] = 0.0;

  this->SetNumberOfInputPorts(0);
}

//----------------------------------------------------------------------------
vtkVolumeOutlineSource::~vtkVolumeOutlineSource ()
{
  if (this->VolumeMapper)
    {
    this->VolumeMapper->Delete();
    this->VolumeMapper = 0;
    }
}

//----------------------------------------------------------------------------
void vtkVolumeOutlineSource::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "VolumeMapper: ";
  if (this->VolumeMapper)
    {
    os << this->VolumeMapper << "\n";
    }
  else
    {
    os << "(none)\n";
    }

  os << indent << "GenerateFaces: "
     << (this->GenerateFaces ? "On\n" : "Off\n" );

  os << indent << "GenerateOutline: "
     << (this->GenerateOutline ? "On\n" : "Off\n" );

  os << indent << "GenerateScalars: "
     << (this->GenerateScalars ? "On\n" : "Off\n" );

  os << indent << "Color: " << this->Color[0] << ", "
     << this->Color[1] << ", " << this->Color[2] << "\n";

  os << indent << "ActivePlaneId: " << this->ActivePlaneId << "\n";

  os << indent << "ActivePlaneColor: " << this->ActivePlaneColor[0] << ", "
     << this->ActivePlaneColor[1] << ", " << this->ActivePlaneColor[2] << "\n";
}

//----------------------------------------------------------------------------
int vtkVolumeOutlineSource::ComputeCubePlanes(
  double planes[3][4], double croppingPlanes[6], double bounds[6])
{
  // Combine the CroppingRegionPlanes and the Bounds to create
  // a single array.  For each dimension, store the planes in
  // the following order: lo_bound, lo_crop_plane, hi_crop_plane, hi_bound.
  // Also do range checking to ensure that the cropping planes
  // are clamped to the bound limits.

  for (int i = 0; i < 3; i++)
    {
    int j0 = 2*i;
    int j1 = 2*i + 1;

    double a = bounds[j0];
    double b = croppingPlanes[j0];
    double c = croppingPlanes[j1];
    double d = bounds[j1];

    // Sanity check
    if (a > d || b > c)
      {
      return 0;
      }

    // Clamp cropping planes to bounds
    if (b < a) { b = a; };
    if (b > d) { b = d; };
    if (c < a) { c = a; };
    if (c > d) { c = d; };

    planes[i][0] = a;
    planes[i][1] = b;
    planes[i][2] = c;
    planes[i][3] = d;
    }

  return 1;
}

//----------------------------------------------------------------------------
int vtkVolumeOutlineSource::ComputePipelineMTime(
  vtkInformation* vtkNotUsed(request),
  vtkInformationVector** vtkNotUsed(inputVector),
  vtkInformationVector* vtkNotUsed(outputVector),
  int vtkNotUsed(requestFromOutputPort),
  unsigned long* mtime)
{
  unsigned long mTime = this->GetMTime();
  if (this->VolumeMapper)
    {
    unsigned long mapperMTime = this->VolumeMapper->GetMTime();
    if (mapperMTime > mTime)
      {
      mTime = mapperMTime;
      }
    vtkDemandDrivenPipeline *input =
      vtkDemandDrivenPipeline::SafeDownCast(
        this->VolumeMapper->GetInputExecutive());
    if (input)
      {
      // Need to do this because we are not formally connected
      // to the Mapper's pipeline
      input->UpdateInformation();
      unsigned long pipelineMTime = input->GetPipelineMTime();
      if (pipelineMTime > mTime)
        {
        mTime = pipelineMTime;
        }
      }
    }

  *mtime = mTime;

  return 1;
}

//----------------------------------------------------------------------------
int vtkVolumeOutlineSource::RequestInformation(
  vtkInformation* vtkNotUsed(request),
  vtkInformationVector** vtkNotUsed(inputVector),
  vtkInformationVector* vtkNotUsed(outputVector))
{
  // Get the mapper's input, since this is the most convenient
  // place to do so.

  if (!this->VolumeMapper)
    {
    vtkWarningMacro("No VolumeMapper has been set.");
    return 1;
    }

  vtkInformation *mapInfo = this->VolumeMapper->GetInputInformation();

  if (!mapInfo)
    {
    vtkWarningMacro("The VolumeMapper does not have an input set.");
    return 1;
    }

  // Don't have to update mapper's input, since it was done in
  // ComputePipelineMTime.
  // data->UpdateInformation();

  // Don't call GetBounds because we need WholeExtent, while
  // GetBounds only returns the bounds for Extent.

  double spacing[3];
  double origin[3];
  int extent[6];

  mapInfo->Get(vtkDataObject::SPACING(), spacing);
  mapInfo->Get(vtkDataObject::ORIGIN(), origin);
  mapInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
               extent);

  for (int i = 0; i < 3; i++)
    {
    int j0 = 2*i;
    int j1 = j0+1;

    if (extent[j0] > extent[j1])
      {
      vtkMath::UninitializeBounds(this->Bounds);
      break;
      }

    if (spacing[i] > 0)
      {
      this->Bounds[j0] = origin[i] + spacing[i]*extent[j0];
      this->Bounds[j1] = origin[i] + spacing[i]*extent[j1];
      }
    else
      {
      this->Bounds[j0] = origin[i] + spacing[i]*extent[j1];
      this->Bounds[j1] = origin[i] + spacing[i]*extent[j0];
      }

    this->CroppingRegionPlanes[j0] = this->Bounds[j0];
    this->CroppingRegionPlanes[j1] = this->Bounds[j1];
    }

  this->CroppingRegionFlags = 0x0002000;

  this->Cropping = this->VolumeMapper->GetCropping();
  if (this->Cropping)
    {
    this->CroppingRegionFlags = this->VolumeMapper->GetCroppingRegionFlags();
    this->VolumeMapper->GetCroppingRegionPlanes(this->CroppingRegionPlanes);
    }

  return 1;
}

//----------------------------------------------------------------------------
int vtkVolumeOutlineSource::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **vtkNotUsed(inputVector),
  vtkInformationVector *outputVector)
{
  // get the info object
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the output
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkDebugMacro(<< "Creating cropping region outline");

  // For each of the 3 dimensions, there are 4 planes: two bounding planes
  // on the outside, and two cropping region planes inside.
  double planes[3][4];

  if (!this->VolumeMapper || !this->VolumeMapper->GetInput() ||
      !this->ComputeCubePlanes(planes,this->CroppingRegionPlanes,this->Bounds))
    {
    // If the bounds or the cropping planes are invalid, clear the data
    output->SetPoints(0);
    output->SetLines(0);
    output->GetCellData()->SetScalars(0);

    return 1;
    }

  // Compute the tolerance for considering points or planes to be coincident
  double tol = 0;
  for (int planeDim = 0; planeDim < 3; planeDim++)
    {
    double d = planes[planeDim][3] - planes[planeDim][0];
    tol += d*d;
    }
  tol = sqrt(tol)*1e-5;

  // Create an array to nudge crop planes over to the bounds if they are
  // within tolerance of the bounds
  int tolPtId[3][4];
  this->NudgeCropPlanesToBounds(tolPtId, planes, tol);

  // The all-important cropping flags
  int flags = this->CroppingRegionFlags;

  // The active plane, which gets a special color for its scalars
  int activePlane = this->ActivePlaneId;
  if (activePlane > 5) { activePlane = -1; };

  // Convert the colors to unsigned char for scalars
  unsigned char colors[2][3];
  this->CreateColorValues(colors, this->Color, this->ActivePlaneColor);

  // Create the scalars used to color the lines
  vtkUnsignedCharArray *scalars = 0;

  if (this->GenerateScalars)
    {
    scalars = vtkUnsignedCharArray::New();
    scalars->SetNumberOfComponents(3);
    }

  // Generate all the lines for the outline.
  vtkCellArray *lines = 0;

  if (this->GenerateOutline)
    {
    lines = vtkCellArray::New();
    this->GenerateLines(lines, scalars, colors, activePlane, flags, tolPtId);
    }

  // Generate the polys for the outline
  vtkCellArray *polys =  0;

  if (this->GenerateFaces)
    {
    polys = vtkCellArray::New();
    this->GeneratePolys(polys, scalars, colors, activePlane, flags, tolPtId);
    }

  // Generate the points that are used by the lines.
  vtkPoints *points = vtkPoints::New();
  this->GeneratePoints(points, lines, polys, planes, tol);

  output->SetPoints(points);
  points->Delete();

  output->SetPolys(polys);
  if (polys)
    {
    polys->Delete();
    }

  output->SetLines(lines);
  if (lines)
    {
    lines->Delete();
    }

  output->GetCellData()->SetScalars(scalars);
  if (scalars)
    {
    scalars->Delete();
    }

  return 1;
}

//----------------------------------------------------------------------------
void vtkVolumeOutlineSource::GeneratePolys(
  vtkCellArray *polys,
  vtkUnsignedCharArray *scalars,
  unsigned char colors[2][3],
  int activePlane,
  int flags,
  int tolPtId[3][4])
{
  // Loop over the three dimensions and create the face rectangles
  for (int dim0 = 0; dim0 < 3; dim0++)
    {
    // Compute the other two dimension indices
    int dim1 = (dim0+1)%3;
    int dim2 = (dim0+2)%3;

    // Indices into the cubes
    int idx[3];

    // Loop over the "dim+2" dimension
    for (int i = 0; i < 4; i++)
      {
      idx[dim2] = i;

      // Loop over the "dim+1" dimension
      for (int j = 0; j < 3; j++)
        {
        idx[dim1] = j;

        // Make sure that the rect dim is not less than tolerance
        if ((j == 0 && tolPtId[dim1][1] == 0) ||
            (j == 2 && tolPtId[dim1][2] == 3))
          {
          continue;
          }

        // Loop over rectangle along the "dim" dimension
        for (int k = 0; k < 3; k++)
          {
          idx[dim0] = k;

          // Make sure that the rect dim is not less than tolerance
          if ((k == 0 && tolPtId[dim0][1] == 0) ||
              (k == 2 && tolPtId[dim0][2] == 3))
            {
            continue;
            }

          // The points in the rectangle, which are nudged over to the
          // volume bounds if the cropping planes are within tolerance
          // of the volume bounds.
          int pointId[4];
          pointId[0] = (tolPtId[2][idx[2]]*16 +
                        tolPtId[1][idx[1]]*4 +
                        tolPtId[0][idx[0]]);
          idx[dim0] = k + 1;
          pointId[1] = (tolPtId[2][idx[2]]*16 +
                        tolPtId[1][idx[1]]*4 +
                        tolPtId[0][idx[0]]);
          idx[dim1] = j + 1;
          pointId[2] = (tolPtId[2][idx[2]]*16 +
                        tolPtId[1][idx[1]]*4 +
                        tolPtId[0][idx[0]]);
          idx[dim0] = k;
          pointId[3] = (tolPtId[2][idx[2]]*16 +
                        tolPtId[1][idx[1]]*4 +
                        tolPtId[0][idx[0]]);
          idx[dim1] = j;

          // Loop through the two cubes adjacent to the rectangle,
          // in order to determine whether the rectangle is internal:
          // only external faces will be drawn.  The "bitCheck"
          // holds a bit for each of these two cubes.
          int bitCheck = 0;
          int cidx[3];
          cidx[dim0] = idx[dim0];
          cidx[dim1] = idx[dim1];
          for (int ii = 0; ii < 2; ii++)
            {
            // First get idx[dim2]-1, then idx[dim2]
            cidx[dim2] = idx[dim2] + ii - 1;
            int flagval = 0;
            if (cidx[dim2] >= 0 && cidx[dim2] < 3)
              {
              int flagbit = cidx[2]*9 + cidx[1]*3 + cidx[0];
              flagval = ((flags >> flagbit) & 1);
              }
            bitCheck <<= 1;
            bitCheck |= flagval;
            }

          // Whether we need to create a face depends on bitCheck.
          // Values 00, 11 don't need lines, while 01 and 10 do.

          // If our rect isn't an internal rect
          if (bitCheck != 0x0 && bitCheck != 0x3)
            {
            // Check if the rect is on our active plane
            int active = 0;
            if (activePlane >= 0)
              {
              int planeDim = (activePlane >> 1); // same as "/ 2"
              int planeIdx = 1 + (activePlane & 1); // same as "% 2"
              if (planeDim == dim2 && i == planeIdx)
                {
                active = 1;
                }
              }

            // Insert the rectangle with the correct sense
            polys->InsertNextCell(4);
            if (bitCheck == 0x2)
              {
              polys->InsertCellPoint(pointId[0]);
              polys->InsertCellPoint(pointId[1]);
              polys->InsertCellPoint(pointId[2]);
              polys->InsertCellPoint(pointId[3]);
              }
            else // (bitCheck == 0x1)
              {
              polys->InsertCellPoint(pointId[3]);
              polys->InsertCellPoint(pointId[2]);
              polys->InsertCellPoint(pointId[1]);
              polys->InsertCellPoint(pointId[0]);
              }

            // Color the face
            if (scalars)
              {
              scalars->InsertNextTupleValue(colors[active]);
              }
            }

          } // loop over k
        } // loop over j
      } // loop over i
    } // loop over dim0
}

//----------------------------------------------------------------------------
void vtkVolumeOutlineSource::GenerateLines(
  vtkCellArray *lines,
  vtkUnsignedCharArray *scalars,
  unsigned char colors[2][3],
  int activePlane,
  int flags,
  int tolPtId[3][4])
{
  // Loop over the three dimensions and create the lines
  for (int dim0 = 0; dim0 < 3; dim0++)
    {
    // Compute the other two dimension indices
    int dim1 = (dim0+1)%3;
    int dim2 = (dim0+2)%3;

    // Indices into the cubes
    int idx[3];

    // Loop over the "dim+2" dimension
    for (int i = 0; i < 4; i++)
      {
      idx[dim2] = i;

      // Loop over the "dim+1" dimension
      for (int j = 0; j < 4; j++)
        {
        idx[dim1] = j;

        // Loop over line segments along the "dim" dimension
        for (int k = 0; k < 3; k++)
          {
          idx[dim0] = k;

          // Make sure that the segment length is not less than tolerance
          if ((k == 0 && tolPtId[dim0][1] == 0) ||
              (k == 2 && tolPtId[dim0][2] == 3))
            {
            continue;
            }

          // The endpoints of the segment, which are nudged over to the
          // volume bounds if the cropping planes are within tolerance
          // of the volume bounds.
          int pointId0 = (tolPtId[2][idx[2]]*16 +
                          tolPtId[1][idx[1]]*4 +
                          tolPtId[0][idx[0]]);
          idx[dim0] = k + 1;
          int pointId1 = (tolPtId[2][idx[2]]*16 +
                          tolPtId[1][idx[1]]*4 +
                          tolPtId[0][idx[0]]);
          idx[dim0] = k;

          // Loop through the four cubes adjacent to the line segment,
          // in order to determine whether the line segment is on an
          // edge: only the edge lines will be drawn.  The "bitCheck"
          // holds a bit for each of these four cubes.
          int bitCheck = 0;
          int cidx[3];
          cidx[dim0] = idx[dim0];
          for (int ii = 0; ii < 2; ii++)
            {
            // First get idx[dim1]-1, then idx[dim1]
            cidx[dim1] = idx[dim1] + ii - 1;
            for (int jj = 0; jj < 2; jj++)
              {
              // First get idx[dim2]-1, then idx[dim2], but reverse
              // the order when ii loop is on its second iteration
              cidx[dim2] = idx[dim2] + (ii^jj) - 1;
              int flagval = 0;
              if (cidx[dim1] >= 0 && cidx[dim1] < 3 &&
                  cidx[dim2] >= 0 && cidx[dim2] < 3)
                {
                int flagbit = cidx[2]*9 + cidx[1]*3 + cidx[0];
                flagval = ((flags >> flagbit) & 1);
                }
              bitCheck <<= 1;
              bitCheck |= flagval;
              }
            }

          // Whether we need a line depends on the the value of bitCheck.
          // Values 0000, 0011, 0110, 1100, 1001, 1111 don't need lines.
          // Build a bitfield to check our bitfield values against, each
          // set bit in this new bitfield corresponds to a non-edge case.
          const int noLineValues = ((1 << 0x0) | (1 << 0x3) | (1 << 0x6) |
                                    (1 << 0x9) | (1 << 0xc) | (1 << 0xf));

          // If our line segment is an edge, there is lots of work to do.
          if (((noLineValues >> bitCheck) & 1) == 0)
            {
            // Check if the line segment is on our active plane
            int active = 0;
            if (activePlane >= 0)
              {
              int planeDim = (activePlane >> 1); // same as "/ 2"
              int planeIdx = 1 + (activePlane & 1); // same as "% 2"
              if ((planeDim == dim2 && i == planeIdx) ||
                  (planeDim == dim1 && j == planeIdx))
                {
                active = 1;
                }
              }

            // Check to make sure line segment isn't already there
            int foundDuplicate = 0;
            lines->InitTraversal();
            vtkIdType npts, *pts;
            for (int cellId = 0; lines->GetNextCell(npts, pts); cellId++)
              {
              if (pts[0] == pointId0 && pts[1] == pointId1)
                {
                // Change color if current segment is on active plane
                if (scalars && active)
                  {
                  scalars->SetTupleValue(cellId, colors[active]);
                  }
                foundDuplicate = 1;
                break;
                }
              }

            if (!foundDuplicate)
              {
              // Insert the line segment
              lines->InsertNextCell(2);
              lines->InsertCellPoint(pointId0);
              lines->InsertCellPoint(pointId1);

              // Color the line segment
              if (scalars)
                {
                scalars->InsertNextTupleValue(colors[active]);
                }
              }
            }

          } // loop over k
        } // loop over j
      } // loop over i
    } // loop over dim0
}

//----------------------------------------------------------------------------
void vtkVolumeOutlineSource::GeneratePoints(
  vtkPoints *points, vtkCellArray *lines, vtkCellArray *polys,
  double planes[3][4], double tol)
{
  // Use a bitfield to store which of the 64 points we need.
  // Two 32-bit ints are a convenient, portable way to do this.
  unsigned int pointBits1 = 0;
  unsigned int pointBits2 = 0;

  vtkIdType npts, *pts;
  vtkCellArray *cellArrays[2];
  cellArrays[0] = lines;
  cellArrays[1] = polys;

  for (int arrayId = 0; arrayId < 2; arrayId++)
    {
    if (cellArrays[arrayId])
      {
      cellArrays[arrayId]->InitTraversal();
      while (cellArrays[arrayId]->GetNextCell(npts, pts))
        {
        for (int ii = 0; ii < npts; ii++)
          {
          int pointId = pts[ii];
          if (pointId < 32) { pointBits1 |= (1 << pointId); }
          else { pointBits2 |= (1 << (pointId - 32)); }
          }
        }
      }
    }

  // Create the array of up to 64 points, and use the pointBits bitfield
  // to find out which points were used.  It is also necessary to go through
  // and update the cells with the modified point ids.
  unsigned int pointBits = pointBits1;
  int ptId = 0;
  int newPtId = 0;

  for (int i = 0; i < 4; i++)
    {
    // If we're halfway done, switch over to the next 32 bits
    if (i == 2) { pointBits = pointBits2; }

    for (int j = 0; j < 4; j++)
      {
      for (int k = 0; k < 4; k++)
        {
        // Check to see if this point was actually used
        if ( (pointBits & 1) )
          {
          // Add or subtract tolerance as an offset to help depth check
          double x = planes[0][k] + tol*(1 - 2*(k < 2));
          double y = planes[1][j] + tol*(1 - 2*(j < 2));
          double z = planes[2][i] + tol*(1 - 2*(i < 2));

          points->InsertNextPoint(x, y, z);

          for (int arrayId = 0; arrayId < 2; arrayId++)
            {
            // Go through the cells, substitute old Id for new Id
            if (cellArrays[arrayId])
              {
              cellArrays[arrayId]->InitTraversal();
              while (cellArrays[arrayId]->GetNextCell(npts, pts))
                {
                for (int ii = 0; ii < npts; ii++)
                  {
                  if (pts[ii] == ptId) { pts[ii] = newPtId; }
                  }
                }
              }
            }
          newPtId++;
          }
        pointBits >>= 1;
        ptId++;
        }
      }
    }
}

//----------------------------------------------------------------------------
void vtkVolumeOutlineSource::NudgeCropPlanesToBounds(
  int tolPtId[3][4], double planes[3][4], double tol)
{
  for (int dim = 0; dim < 3; dim++)
    {
    tolPtId[dim][0] = 0; tolPtId[dim][1] = 1;
    tolPtId[dim][2] = 2; tolPtId[dim][3] = 3;
    if (planes[dim][1] - planes[dim][0] < tol) { tolPtId[dim][1] = 0; }
    if (planes[dim][3] - planes[dim][2] < tol) { tolPtId[dim][2] = 3; }
    }
}

//----------------------------------------------------------------------------
void vtkVolumeOutlineSource::CreateColorValues(
  unsigned char colors[2][3], double color1[3], double color2[3])
{
  // Convert the two colors to unsigned char
  double *dcolors[2];
  dcolors[0] = color1;
  dcolors[1] = color2;

  for (int i = 0; i < 2; i++)
    {
    for (int j = 0; j < 3; j++)
      {
      double val = dcolors[i][j];
      if (val < 0) { val = 0; }
      if (val > 1) { val = 1; }
      colors[i][j] = static_cast<unsigned char>(val*255);
      }
    }
}