1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkGPUVolumeRayCastMapper_ShadeFS.glsl
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// Fragment shader that implements initShade() and shade() in the case of
// shading.
// The functions are used in composite mode.
#version 110
// "value" is a sample of the dataset.
// Think of "value" as an object.
// from 1- vs 4-component shader.
vec4 colorFromValue(vec4 value);
uniform sampler3D dataSetTexture; // need neighbors for gradient
// Change-of-coordinate matrix from eye space to texture space
uniform mat3 eyeToTexture3;
uniform mat4 eyeToTexture4;
// Tranpose of Change-of-coordinate matrix from texture space to eye space
uniform mat3 transposeTextureToEye;
// Used to compute the gradient.
uniform vec3 cellStep;
uniform vec3 cellScale;
// Entry position (global scope), updated in the loop
vec3 pos;
// Incremental vector in texture space (global scope)
vec3 rayDir;
// local to the implementation, shared between initShade() and shade()
const vec3 minusOne=vec3(-1.0,-1.0,-1.0);
const vec4 clampMin=vec4(0.0,0.0,0.0,0.0);
const vec4 clampMax=vec4(1.0,1.0,1.0,1.0);
vec3 xvec;
vec3 yvec;
vec3 zvec;
vec3 wReverseRayDir;
vec3 lightPos;
vec3 ldir;
vec3 h;
vec4 hPos; // homogeneous position
// ----------------------------------------------------------------------------
void initShade()
{
xvec=vec3(cellStep.x,0.0,0.0); // 0.01
yvec=vec3(0.0,cellStep.y,0.0);
zvec=vec3(0.0,0.0,cellStep.z);
// Reverse ray direction in eye space
wReverseRayDir=eyeToTexture3*rayDir;
wReverseRayDir=wReverseRayDir*minusOne;
wReverseRayDir=normalize(wReverseRayDir);
// Directonal light: w==0
if(gl_LightSource[0].position.w==0.0)
{
ldir=gl_LightSource[0].position.xyz;
ldir=normalize(ldir);
h=normalize(ldir+wReverseRayDir);
}
else
{
lightPos=gl_LightSource[0].position.xyz/gl_LightSource[0].position.w;
hPos.w=1.0; // used later
}
}
// ----------------------------------------------------------------------------
vec4 shade(vec4 value)
{
vec3 g1;
vec3 g2;
vec4 tmp;
float att;
float spot;
g1.x=texture3D(dataSetTexture,pos+xvec).x;
g1.y=texture3D(dataSetTexture,pos+yvec).x;
g1.z=texture3D(dataSetTexture,pos+zvec).x;
g2.x=texture3D(dataSetTexture,pos-xvec).x;
g2.y=texture3D(dataSetTexture,pos-yvec).x;
g2.z=texture3D(dataSetTexture,pos-zvec).x;
// g1-g2 is the gradient in texture coordinates
// the result is the normalized gradient in eye coordinates.
g2=g1-g2;
g2=g2*cellScale;
float normalLength=length(g2);
if(normalLength>0.0)
{
g2=normalize(transposeTextureToEye*g2);
}
else
{
g2=vec3(0.0,0.0,0.0);
}
vec4 color=colorFromValue(value);
vec4 frontLightProduct_Diffuse= gl_LightSource[0].diffuse*gl_FrontMaterial.diffuse;
vec4 frontLightProduct_Specular= gl_LightSource[0].specular*gl_FrontMaterial.specular;
// initialize color to 0.0
vec4 finalColor=vec4(0.0,0.0,0.0,0.0);
if(gl_LightSource[0].position.w!=0.0)
{
// We need to know the eye position only if light is positional
// ldir= vertex position in eye coordinates
hPos.xyz=pos;
tmp=eyeToTexture4*hPos;
ldir=tmp.xyz/tmp.w;
// ldir=light direction
ldir=lightPos-ldir;
float sqrDistance=dot(ldir,ldir);
ldir=normalize(ldir);
h=normalize(ldir+wReverseRayDir);
att=1.0/(gl_LightSource[0].constantAttenuation+gl_LightSource[0].linearAttenuation*sqrt(sqrDistance)+gl_LightSource[0].quadraticAttenuation*sqrDistance);
}
else
{
att=1.0;
}
if(att>0.0)
{
if(gl_LightSource[0].spotCutoff==180.0)
{
spot=1.0;
}
else
{
float coef=-dot(ldir,gl_LightSource[0].spotDirection);
if(coef>=gl_LightSource[0].spotCosCutoff)
{
spot=pow(coef,gl_LightSource[0].spotExponent);
}
else
{
spot=0.0;
}
}
if(spot>0.0)
{
// LIT operation...
float nDotL=dot(g2,ldir);
float nDotH=dot(g2,h);
// separate nDotL and nDotH for two-sided shading, otherwise we
// get black spots.
if(nDotL<0.0) // two-sided shading
{
nDotL=-nDotL;
}
if(nDotH<0.0) // two-sided shading
{
nDotH=-nDotH;
}
// ambient term for this light
finalColor+=gl_FrontLightProduct[0].ambient;
// diffuse term for this light
if(nDotL>0.0)
{
finalColor +=(frontLightProduct_Diffuse*nDotL)*color;
}
// specular term for this light
float shininessFactor=pow(nDotH,gl_FrontMaterial.shininess);
finalColor+=frontLightProduct_Specular*shininessFactor;
finalColor*=att*spot;
}
}
// scene ambient term
finalColor+=gl_FrontLightModelProduct.sceneColor*color;
// clamp. otherwise we get black spots
finalColor=clamp(finalColor,clampMin,clampMax);
return finalColor;
}
|