1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkBox.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkBox.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkBoundingBox.h"
#include <cassert>
vtkStandardNewMacro(vtkBox);
// Construct the box centered at the origin and each side length 1.0.
//----------------------------------------------------------------------------
vtkBox::vtkBox()
{
this->BBox = new vtkBoundingBox;
}
//----------------------------------------------------------------------------
// Destroy the bounding box
vtkBox::~vtkBox()
{
delete this->BBox;
}
//----------------------------------------------------------------------------
// Set the bounds in various ways
void vtkBox::SetBounds(double xMin, double xMax,
double yMin, double yMax,
double zMin, double zMax)
{
const double *minP = this->BBox->GetMinPoint();
const double *maxP = this->BBox->GetMaxPoint();
if ( (minP[0] == xMin) &&
(maxP[0] == xMax) &&
(minP[1] == yMin) &&
(maxP[1] == yMax) &&
(minP[2] == zMin) &&
(maxP[2] == zMax))
{
return;
}
this->BBox->SetBounds(xMin, xMax, yMin, yMax, zMin, zMax);
this->Modified();
}
//----------------------------------------------------------------------------
void vtkBox::SetBounds(const double bounds[6])
{
this->SetBounds(bounds[0],bounds[1], bounds[2],bounds[3],
bounds[4],bounds[5]);
}
//----------------------------------------------------------------------------
void vtkBox::SetXMin(double x, double y, double z)
{
vtkDebugMacro(<< this->GetClassName() << " (" << this
<< "): setting XMin to ("
<< x << "," << y << "," << z << ")");
const double *p = this->BBox->GetMinPoint();
if ((p[0] == x) && (p[1] == y) && (p[2] == z))
{
return;
}
this->BBox->SetMinPoint(x, y, z);
this->Modified();
}
//----------------------------------------------------------------------------
void vtkBox::SetXMax(double x, double y, double z)
{
vtkDebugMacro(<< this->GetClassName() << " (" << this
<< "): setting XMax to ("
<< x << "," << y << "," << z << ")");
const double *p = this->BBox->GetMaxPoint();
if ((p[0] == x) && (p[1] == y) && (p[2] == z))
{
return;
}
this->BBox->SetMaxPoint(x, y, z);
this->Modified();
}
//----------------------------------------------------------------------------
void vtkBox::GetBounds(double &xMin, double &xMax,
double &yMin, double &yMax,
double &zMin, double &zMax)
{
this->BBox->GetBounds(xMin, xMax, yMin, yMax, zMin, zMax);
}
//----------------------------------------------------------------------------
void vtkBox::GetBounds(double bounds[6])
{
this->BBox->GetBounds(bounds);
}
//----------------------------------------------------------------------------
double* vtkBox::GetBounds()
{
this->BBox->GetBounds(this->Bounds);
return this->Bounds;
}
//----------------------------------------------------------------------------
void vtkBox::AddBounds(const double bounds[6])
{
vtkBoundingBox bbox(*(this->BBox));
this->BBox->AddBounds(bounds);
// If the unioned bounding has changed called modified
if ((*this->BBox) != bbox)
{
this->Modified();
}
}
//----------------------------------------------------------------------------
// Evaluate box equation. This differs from the similar vtkPlanes
// (with six planes) because of the "rounded" nature of the corners.
double vtkBox::EvaluateFunction(double x[3])
{
double diff, dist, minDistance=(-VTK_DOUBLE_MAX), t, distance=0.0;
int inside=1;
const double *minP = this->BBox->GetMinPoint();
const double *maxP = this->BBox->GetMaxPoint();
for (int i=0; i<3; i++)
{
diff = this->BBox->GetLength(i);
if ( diff != 0.0 )
{
t = (x[i]-minP[i]) / diff;
if ( t < 0.0 )
{
inside = 0;
dist = minP[i] - x[i];
}
else if ( t > 1.0 )
{
inside = 0;
dist = x[i] - maxP[i];
}
else
{//want negative distance, we are inside
if ( t <= 0.5 )
{
dist = minP[i] - x[i];
}
else
{
dist = x[i] - maxP[i];
}
if ( dist > minDistance ) //remember, it's negative
{
minDistance = dist;
}
}//if inside
}
else
{
dist = fabs(x[i]-minP[i]);
if ( dist > 0.0 )
{
inside = 0;
}
}
if ( dist > 0.0 )
{
distance += dist*dist;
}
}//for all coordinate directions
distance = sqrt(distance);
if ( inside )
{
return minDistance;
}
else
{
return distance;
}
}
//----------------------------------------------------------------------------
// Evaluate box gradient.
void vtkBox::EvaluateGradient(double x[3], double n[3])
{
int i, loc[3], minAxis=0;
double dist, minDist=VTK_DOUBLE_MAX, center[3];
double inDir[3], outDir[3];
const double *minP = this->BBox->GetMinPoint();
const double *maxP = this->BBox->GetMaxPoint();
// Compute the location of the point with respect to the box.
// Ultimately the point will lie in one of 27 separate regions around
// or within the box. The gradient vector is computed differently in
// each of the regions.
inDir[0] = inDir[1] = inDir[2] = 0.0;
outDir[0] = outDir[1] = outDir[2] = 0.0;
this->BBox->GetCenter(center);
for (i=0; i<3; i++)
{
if ( x[i] < minP[i] )
{
loc[i] = 0;
outDir[i] = -1.0;
}
else if ( x[i] > maxP[i] )
{
loc[i] = 2;
outDir[i] = 1.0;
}
else
{
loc[i] = 1;
if ( x[i] <= center[i] )
{
dist = x[i] - minP[i];
inDir[i] = -1.0;
}
else
{
dist = maxP[i] - x[i];
inDir[i] = 1.0;
}
if ( dist < minDist ) //remember, it's negative
{
minDist = dist;
minAxis = i;
}
}//if inside
}//for all coordinate directions
int indx = loc[0] + 3*loc[1] + 9*loc[2];
switch (indx)
{
// verts - gradient points away from center point
case 0: case 2: case 6: case 8: case 18: case 20: case 24: case 26:
for (i=0; i<3; i++)
{
n[i] = x[i] - center[i];
}
vtkMath::Normalize(n);
break;
// edges - gradient points out from axis of cube
case 1: case 3: case 5: case 7:
case 9: case 11: case 15: case 17:
case 19: case 21: case 23: case 25:
for (i=0; i<3; i++)
{
if ( outDir[i] != 0.0 )
{
n[i] = x[i] - center[i];
}
else
{
n[i] = 0.0;
}
}
vtkMath::Normalize(n);
break;
// faces - gradient points perpendicular to face
case 4: case 10: case 12: case 14: case 16: case 22:
for (i=0; i<3; i++)
{
n[i] = outDir[i];
}
break;
// interior - gradient is perpendicular to closest face
case 13:
n[0] = n[1] = n[2] = 0.0;
n[minAxis] = inDir[minAxis];
break;
default:
assert("check: impossible case." && 0); // reaching this line is a bug.
break;
}
}
#define VTK_RIGHT 0
#define VTK_LEFT 1
#define VTK_MIDDLE 2
//----------------------------------------------------------------------------
// Bounding box intersection modified from Graphics Gems Vol I. The method
// returns a non-zero value if the bounding box is hit. Origin[3] starts
// the ray, dir[3] is the vector components of the ray in the x-y-z
// directions, coord[3] is the location of hit, and t is the parametric
// coordinate along line. (Notes: the intersection ray dir[3] is NOT
// normalized. Valid intersections will only occur between 0<=t<=1.)
char vtkBox::IntersectBox (double bounds[6], double origin[3], double dir[3],
double coord[3], double& t)
{
bool inside=true;
char quadrant[3];
int i, whichPlane=0;
double maxT[3], candidatePlane[3];
// First find closest planes
//
for (i=0; i<3; i++)
{
if ( origin[i] < bounds[2*i] )
{
quadrant[i] = VTK_LEFT;
candidatePlane[i] = bounds[2*i];
inside = false;
}
else if ( origin[i] > bounds[2*i+1] )
{
quadrant[i] = VTK_RIGHT;
candidatePlane[i] = bounds[2*i+1];
inside = false;
}
else
{
quadrant[i] = VTK_MIDDLE;
}
}
// Check whether origin of ray is inside bbox
//
if (inside)
{
coord[0] = origin[0];
coord[1] = origin[1];
coord[2] = origin[2];
t = 0;
return 1;
}
// Calculate parametric distances to plane
//
for (i=0; i<3; i++)
{
if ( quadrant[i] != VTK_MIDDLE && dir[i] != 0.0 )
{
maxT[i] = (candidatePlane[i]-origin[i]) / dir[i];
}
else
{
maxT[i] = -1.0;
}
}
// Find the largest parametric value of intersection
//
for (i=0; i<3; i++)
{
if ( maxT[whichPlane] < maxT[i] )
{
whichPlane = i;
}
}
// Check for valid intersection along line
//
if ( maxT[whichPlane] > 1.0 || maxT[whichPlane] < 0.0 )
{
return 0;
}
else
{
t = maxT[whichPlane];
}
// Intersection point along line is okay. Check bbox.
//
for (i=0; i<3; i++)
{
if (whichPlane != i)
{
coord[i] = origin[i] + maxT[whichPlane]*dir[i];
if ( coord[i] < bounds[2*i] || coord[i] > bounds[2*i+1] )
{
return 0;
}
}
else
{
coord[i] = candidatePlane[i];
}
}
return 1;
}
#undef VTK_RIGHT
#undef VTK_LEFT
#undef VTK_MIDDLE
//----------------------------------------------------------------------------
// Bounding box intersection code from David Gobbi. Go through the
// bounding planes one at a time and compute the parametric coordinate
// of each intersection.
int vtkBox::IntersectWithLine(const double bounds[6],
const double p1[3], const double p2[3],
double &t1, double &t2,
double x1[3], double x2[3],
int &plane1, int &plane2)
{
plane1 = -1;
plane2 = -1;
t1 = 0.0;
t2 = 1.0;
for (int j = 0; j < 3; j++)
{
for (int k = 0; k < 2; k++)
{
// Compute distances of p1 and p2 from the plane along the plane normal
int i = 2*j + k;
double d1 = (bounds[i] - p1[j])*(1 - 2*k);
double d2 = (bounds[i] - p2[j])*(1 - 2*k);
// If both distances are positive, both points are outside
if (d1 > 0 && d2 > 0)
{
return 0;
}
// If one of the distances is positive, the line crosses the plane
else if (d1 > 0 || d2 > 0)
{
// Compute fractional distance "t" of the crossing between p1 & p2
double t = 0.0;
if (d1 != 0)
{
t = d1/(d1 - d2);
}
// If point p1 was clipped, adjust t1
if (d1 > 0)
{
if (t >= t1)
{
t1 = t;
plane1 = i;
}
}
// else point p2 was clipped, so adjust t2
else
{
if (t <= t2)
{
t2 = t;
plane2 = i;
}
}
// If this happens, there's no line left
if (t1 > t2)
{
// Allow for planes that are coincident or slightly inverted
if (plane1 < 0 || plane2 < 0 || (plane1 >> 1) != (plane2 >> 1))
{
return 0;
}
}
}
}
}
double *x = x1;
double t = t1;
int plane = plane1;
for (int count = 0; count < 2; count++)
{
if (x)
{
for (int i = 0; i < 3; i++)
{
if (plane == 2*i || plane == 2*i+1)
{
x[i] = bounds[plane];
}
else
{
x[i] = p1[i]*(1.0 - t) + p2[i]*t;
if (x[i] < bounds[2*i]) { x[i] = bounds[2*i]; }
if (x[i] > bounds[2*i+1]) { x[i] = bounds[2*i+1]; }
}
}
}
x = x2;
t = t2;
plane = plane2;
}
return 1;
}
//----------------------------------------------------------------------------
void vtkBox::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
const double *minP = this->BBox->GetMinPoint();
const double *maxP = this->BBox->GetMaxPoint();
os << indent << "XMin: (" << minP[0] << ", "
<< minP[1] << ", " << minP[2] << ")\n";
os << indent << "XMax: (" << maxP[0] << ", "
<< maxP[1] << ", " << maxP[2] << ")\n";
}
//----------------------------------------------------------------------------
void vtkBox::GetXMin(double p[3])
{
this->BBox->GetMinPoint(p[0], p[1], p[2]);
}
//----------------------------------------------------------------------------
void vtkBox::GetXMin(double &x , double &y, double &z)
{
this->BBox->GetMinPoint(x, y, z);
}
//----------------------------------------------------------------------------
void vtkBox::GetXMax(double p[3])
{
this->BBox->GetMaxPoint(p[0], p[1], p[2]);
}
//----------------------------------------------------------------------------
void vtkBox::GetXMax(double &x , double &y, double &z)
{
this->BBox->GetMaxPoint(x, y, z);
}
|