1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkGeometricErrorMetric.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkGeometricErrorMetric.h"
#include "vtkObjectFactory.h"
#include "vtkGenericAttribute.h"
#include "vtkGenericAttributeCollection.h"
#include "vtkGenericAdaptorCell.h"
#include "vtkGenericDataSet.h"
#include "vtkMath.h"
#include <cassert>
vtkStandardNewMacro(vtkGeometricErrorMetric);
//-----------------------------------------------------------------------------
vtkGeometricErrorMetric::vtkGeometricErrorMetric()
{
this->AbsoluteGeometricTolerance = 1.0; // arbitrary positive value
this->Relative=0; // GetError() will return the square absolute error.
this->SmallestSize=1;
}
//-----------------------------------------------------------------------------
vtkGeometricErrorMetric::~vtkGeometricErrorMetric()
{
}
//-----------------------------------------------------------------------------
// Description :
// Set the geometric accuracy with an absolute value.
// Subdivision will be required if the square distance is greater than
// value. For instance 0.01 will give better result than 0.1.
// \pre positive_value: value>0
void vtkGeometricErrorMetric::SetAbsoluteGeometricTolerance(double value)
{
assert("pre: positive_value" && value>0);
this->Relative=0;
if(this->AbsoluteGeometricTolerance!=value)
{
this->AbsoluteGeometricTolerance=value;
this->Modified();
}
}
//-----------------------------------------------------------------------------
// Description :
// Set the geometric accuracy with a value relative to the bounding box of
// the dataset. Internally compute the absolute tolerance.
// For instance 0.01 will give better result than 0.1.
// \pre valid_range_value: value>0 && value<1
// \pre ds_exists: ds!=0
void vtkGeometricErrorMetric::SetRelativeGeometricTolerance(double value,
vtkGenericDataSet *ds)
{
assert("pre: valid_range_value" && value>0 && value<1);
assert("pre: ds_exists" && ds!=0);
double bounds[6];
ds->GetBounds(bounds);
double smallest;
double length;
smallest = bounds[1] - bounds[0];
length = bounds[3] - bounds[2];
if(length < smallest || smallest == 0.0)
{
smallest = length;
}
length = bounds[5] - bounds[4];
if(length < smallest || smallest == 0.0)
{
smallest = length;
}
length = ds->GetLength();
if(length < smallest || smallest == 0.0)
{
smallest = length;
}
if(smallest == 0)
{
smallest = 1;
}
double tmp = value*smallest;
this->SmallestSize=smallest;
cout<<"this->SmallestSize="<<this->SmallestSize<<endl;
this->Relative=1;
tmp=tmp*tmp;
if(this->AbsoluteGeometricTolerance!=tmp)
{
this->AbsoluteGeometricTolerance = tmp;
this->Modified();
}
}
#define VTK_DISTANCE_LINE_POINT
//-----------------------------------------------------------------------------
int vtkGeometricErrorMetric::RequiresEdgeSubdivision(double *leftPoint,
double *midPoint,
double *rightPoint,
#ifdef VTK_DISTANCE_LINE_POINT
double vtkNotUsed(alpha)
#else
double alpha
#endif
)
{
assert("pre: leftPoint_exists" && leftPoint!=0);
assert("pre: midPoint_exists" && midPoint!=0);
assert("pre: rightPoint_exists" && rightPoint!=0);
// assert("pre: clamped_alpha" && alpha>0 && alpha<1); // or else true
if( this->GenericCell->IsGeometryLinear() )
{
//don't need to do anything:
return 0;
}
// distance between the line (leftPoint,rightPoint) and the point midPoint.
#ifdef VTK_DISTANCE_LINE_POINT
return this->Distance2LinePoint(leftPoint,rightPoint,midPoint)>this->AbsoluteGeometricTolerance;
#else
// Interpolated point
double interpolatedPoint[3];
int i=0;
while(i<3)
{
interpolatedPoint[i]=leftPoint[i] + alpha*(rightPoint[i] - leftPoint[i]);
++i;
}
return vtkMath::Distance2BetweenPoints(midPoint,interpolatedPoint)>this->AbsoluteGeometricTolerance;
#endif
}
//-----------------------------------------------------------------------------
// Description:
// Return the error at the mid-point. The type of error depends on the state
// of the concrete error metric. For instance, it can return an absolute
// or relative error metric.
// See RequiresEdgeSubdivision() for a description of the arguments.
// \post positive_result: result>=0
double vtkGeometricErrorMetric::GetError(double *leftPoint,
double *midPoint,
double *rightPoint,
#ifdef VTK_DISTANCE_LINE_POINT
double vtkNotUsed(alpha)
#else
double alpha
#endif
)
{
assert("pre: leftPoint_exists" && leftPoint!=0);
assert("pre: midPoint_exists" && midPoint!=0);
assert("pre: rightPoint_exists" && rightPoint!=0);
// assert("pre: clamped_alpha" && alpha>0 && alpha<1); // or else true
if( this->GenericCell->IsGeometryLinear() )
{
//don't need to do anything:
return 0;
}
// distance between the line (leftPoint,rightPoint) and the point midPoint.
#ifdef VTK_DISTANCE_LINE_POINT
double squareAbsoluteError=this->Distance2LinePoint(leftPoint,rightPoint,midPoint);
#else
// Interpolated point
double interpolatedPoint[3];
int i=0;
while(i<3)
{
interpolatedPoint[i]=leftPoint[i] + alpha*(rightPoint[i] - leftPoint[i]);
++i;
}
double squareAbsoluteError=vtkMath::Distance2BetweenPoints(midPoint,interpolatedPoint);
#endif
if(this->Relative)
{
return sqrt(squareAbsoluteError)/this->SmallestSize;
}
else
{
return squareAbsoluteError;
}
}
//-----------------------------------------------------------------------------
// Description:
// Return the type of output of GetError()
int vtkGeometricErrorMetric::GetRelative()
{
return this->Relative;
}
//-----------------------------------------------------------------------------
// Description:
// Square distance between a straight line (defined by points x and y)
// and a point z. Property: if x and y are equal, the line is a point and
// the result is the square distance between points x and z.
double vtkGeometricErrorMetric::Distance2LinePoint(double x[3],
double y[3],
double z[3])
{
double u[3];
double v[3];
double w[3];
u[0] = y[0] - x[0];
u[1] = y[1] - x[1];
u[2] = y[2] - x[2];
vtkMath::Normalize(u);
v[0] = z[0] - x[0];
v[1] = z[1] - x[1];
v[2] = z[2] - x[2];
double dot = vtkMath::Dot(u,v);
w[0] = v[0] - dot*u[0];
w[1] = v[1] - dot*u[1];
w[2] = v[2] - dot*u[2];
return vtkMath::Dot(w,w);
}
//-----------------------------------------------------------------------------
void vtkGeometricErrorMetric::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "AbsoluteGeometricTolerance: " << this->AbsoluteGeometricTolerance << endl;
}
|