File: vtkPlane.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (229 lines) | stat: -rw-r--r-- 5,716 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPlane.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkPlane.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"

vtkStandardNewMacro(vtkPlane);

// Construct plane passing through origin and normal to z-axis.
vtkPlane::vtkPlane()
{
  this->Normal[0] = 0.0;
  this->Normal[1] = 0.0;
  this->Normal[2] = 1.0;

  this->Origin[0] = 0.0;
  this->Origin[1] = 0.0;
  this->Origin[2] = 0.0;
}

double vtkPlane::DistanceToPlane(double x[3])
{
  return this->DistanceToPlane(x, this->GetNormal(), this->GetOrigin());
}

void vtkPlane::ProjectPoint(double x[3], double origin[3],
                            double normal[3], double xproj[3])
{
  double t, xo[3];

  xo[0] = x[0] - origin[0];
  xo[1] = x[1] - origin[1];
  xo[2] = x[2] - origin[2];

  t = vtkMath::Dot(normal,xo);

  xproj[0] = x[0] - t * normal[0];
  xproj[1] = x[1] - t * normal[1];
  xproj[2] = x[2] - t * normal[2];
}

void vtkPlane::ProjectPoint(double x[3], double xproj[3])
{
  this->ProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}

void vtkPlane::ProjectVector(
  double v[3], double vtkNotUsed(origin)[3], double normal[3],
  double vproj[3])
{
  double t = vtkMath::Dot(v, normal);
  double n2 = vtkMath::Dot(normal, normal);
  if (n2 == 0)
    {
    n2 = 1.0;
    }
  vproj[0] = v[0] - t * normal[0] / n2;
  vproj[1] = v[1] - t * normal[1] / n2;
  vproj[2] = v[2] - t * normal[2] / n2;
}

void vtkPlane::ProjectVector(double v[3], double vproj[3])
{
  this->ProjectVector(v, this->GetOrigin(), this->GetNormal(), vproj);
}


void vtkPlane::Push(double distance)
{
  int i;

  if ( distance == 0.0 )
    {
    return;
    }
  for (i=0; i < 3; i++ )
    {
    this->Origin[i] += distance * this->Normal[i];
    }
  this->Modified();
}

// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal NOT required to
// have magnitude 1.
void vtkPlane::GeneralizedProjectPoint(double x[3], double origin[3],
                                       double normal[3], double xproj[3])
{
  double t, xo[3], n2;

  xo[0] = x[0] - origin[0];
  xo[1] = x[1] - origin[1];
  xo[2] = x[2] - origin[2];

  t = vtkMath::Dot(normal,xo);
  n2 = vtkMath::Dot(normal, normal);

  if (n2 != 0)
    {
    xproj[0] = x[0] - t * normal[0]/n2;
    xproj[1] = x[1] - t * normal[1]/n2;
    xproj[2] = x[2] - t * normal[2]/n2;
    }
  else
    {
    xproj[0] = x[0];
    xproj[1] = x[1];
    xproj[2] = x[2];
    }
}

void vtkPlane::GeneralizedProjectPoint(double x[3], double xproj[3])
{
  this->GeneralizedProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}

// Evaluate plane equation for point x[3].
double vtkPlane::EvaluateFunction(double x[3])
{
  return ( this->Normal[0]*(x[0]-this->Origin[0]) +
           this->Normal[1]*(x[1]-this->Origin[1]) +
           this->Normal[2]*(x[2]-this->Origin[2]) );
}

// Evaluate function gradient at point x[3].
void vtkPlane::EvaluateGradient(double vtkNotUsed(x)[3], double n[3])
{
  for (int i=0; i<3; i++)
    {
    n[i] = this->Normal[i];
    }
}

#define VTK_PLANE_TOL 1.0e-06

// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
int vtkPlane::IntersectWithLine(double p1[3], double p2[3], double n[3],
                               double p0[3], double& t, double x[3])
{
  double num, den, p21[3];
  double fabsden, fabstolerance;

  // Compute line vector
  //
  p21[0] = p2[0] - p1[0];
  p21[1] = p2[1] - p1[1];
  p21[2] = p2[2] - p1[2];

  // Compute denominator.  If ~0, line and plane are parallel.
  //
  num = vtkMath::Dot(n,p0) - ( n[0]*p1[0] + n[1]*p1[1] + n[2]*p1[2] ) ;
  den = n[0]*p21[0] + n[1]*p21[1] + n[2]*p21[2];
  //
  // If denominator with respect to numerator is "zero", then the line and
  // plane are considered parallel.
  //

  // trying to avoid an expensive call to fabs()
  if (den < 0.0)
    {
    fabsden = -den;
    }
  else
    {
    fabsden = den;
    }
  if (num < 0.0)
    {
    fabstolerance = -num*VTK_PLANE_TOL;
    }
  else
    {
    fabstolerance = num*VTK_PLANE_TOL;
    }
  if ( fabsden <= fabstolerance )
    {
    t = VTK_DOUBLE_MAX;
    return 0;
    }

  // valid intersection
  t = num / den;

  x[0] = p1[0] + t*p21[0];
  x[1] = p1[1] + t*p21[1];
  x[2] = p1[2] + t*p21[2];

  if ( t >= 0.0 && t <= 1.0 )
    {
    return 1;
    }
  else
    {
    return 0;
    }
}

int vtkPlane::IntersectWithLine(double p1[3], double p2[3], double& t, double x[3])
{
  return this->IntersectWithLine(p1, p2, this->GetNormal(), this->GetOrigin(), t, x);
}

void vtkPlane::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "Normal: (" << this->Normal[0] << ", "
    << this->Normal[1] << ", " << this->Normal[2] << ")\n";

  os << indent << "Origin: (" << this->Origin[0] << ", "
    << this->Origin[1] << ", " << this->Origin[2] << ")\n";
}