1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPlane.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkPlane.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
vtkStandardNewMacro(vtkPlane);
// Construct plane passing through origin and normal to z-axis.
vtkPlane::vtkPlane()
{
this->Normal[0] = 0.0;
this->Normal[1] = 0.0;
this->Normal[2] = 1.0;
this->Origin[0] = 0.0;
this->Origin[1] = 0.0;
this->Origin[2] = 0.0;
}
double vtkPlane::DistanceToPlane(double x[3])
{
return this->DistanceToPlane(x, this->GetNormal(), this->GetOrigin());
}
void vtkPlane::ProjectPoint(double x[3], double origin[3],
double normal[3], double xproj[3])
{
double t, xo[3];
xo[0] = x[0] - origin[0];
xo[1] = x[1] - origin[1];
xo[2] = x[2] - origin[2];
t = vtkMath::Dot(normal,xo);
xproj[0] = x[0] - t * normal[0];
xproj[1] = x[1] - t * normal[1];
xproj[2] = x[2] - t * normal[2];
}
void vtkPlane::ProjectPoint(double x[3], double xproj[3])
{
this->ProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}
void vtkPlane::ProjectVector(
double v[3], double vtkNotUsed(origin)[3], double normal[3],
double vproj[3])
{
double t = vtkMath::Dot(v, normal);
double n2 = vtkMath::Dot(normal, normal);
if (n2 == 0)
{
n2 = 1.0;
}
vproj[0] = v[0] - t * normal[0] / n2;
vproj[1] = v[1] - t * normal[1] / n2;
vproj[2] = v[2] - t * normal[2] / n2;
}
void vtkPlane::ProjectVector(double v[3], double vproj[3])
{
this->ProjectVector(v, this->GetOrigin(), this->GetNormal(), vproj);
}
void vtkPlane::Push(double distance)
{
int i;
if ( distance == 0.0 )
{
return;
}
for (i=0; i < 3; i++ )
{
this->Origin[i] += distance * this->Normal[i];
}
this->Modified();
}
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal NOT required to
// have magnitude 1.
void vtkPlane::GeneralizedProjectPoint(double x[3], double origin[3],
double normal[3], double xproj[3])
{
double t, xo[3], n2;
xo[0] = x[0] - origin[0];
xo[1] = x[1] - origin[1];
xo[2] = x[2] - origin[2];
t = vtkMath::Dot(normal,xo);
n2 = vtkMath::Dot(normal, normal);
if (n2 != 0)
{
xproj[0] = x[0] - t * normal[0]/n2;
xproj[1] = x[1] - t * normal[1]/n2;
xproj[2] = x[2] - t * normal[2]/n2;
}
else
{
xproj[0] = x[0];
xproj[1] = x[1];
xproj[2] = x[2];
}
}
void vtkPlane::GeneralizedProjectPoint(double x[3], double xproj[3])
{
this->GeneralizedProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}
// Evaluate plane equation for point x[3].
double vtkPlane::EvaluateFunction(double x[3])
{
return ( this->Normal[0]*(x[0]-this->Origin[0]) +
this->Normal[1]*(x[1]-this->Origin[1]) +
this->Normal[2]*(x[2]-this->Origin[2]) );
}
// Evaluate function gradient at point x[3].
void vtkPlane::EvaluateGradient(double vtkNotUsed(x)[3], double n[3])
{
for (int i=0; i<3; i++)
{
n[i] = this->Normal[i];
}
}
#define VTK_PLANE_TOL 1.0e-06
// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
int vtkPlane::IntersectWithLine(double p1[3], double p2[3], double n[3],
double p0[3], double& t, double x[3])
{
double num, den, p21[3];
double fabsden, fabstolerance;
// Compute line vector
//
p21[0] = p2[0] - p1[0];
p21[1] = p2[1] - p1[1];
p21[2] = p2[2] - p1[2];
// Compute denominator. If ~0, line and plane are parallel.
//
num = vtkMath::Dot(n,p0) - ( n[0]*p1[0] + n[1]*p1[1] + n[2]*p1[2] ) ;
den = n[0]*p21[0] + n[1]*p21[1] + n[2]*p21[2];
//
// If denominator with respect to numerator is "zero", then the line and
// plane are considered parallel.
//
// trying to avoid an expensive call to fabs()
if (den < 0.0)
{
fabsden = -den;
}
else
{
fabsden = den;
}
if (num < 0.0)
{
fabstolerance = -num*VTK_PLANE_TOL;
}
else
{
fabstolerance = num*VTK_PLANE_TOL;
}
if ( fabsden <= fabstolerance )
{
t = VTK_DOUBLE_MAX;
return 0;
}
// valid intersection
t = num / den;
x[0] = p1[0] + t*p21[0];
x[1] = p1[1] + t*p21[1];
x[2] = p1[2] + t*p21[2];
if ( t >= 0.0 && t <= 1.0 )
{
return 1;
}
else
{
return 0;
}
}
int vtkPlane::IntersectWithLine(double p1[3], double p2[3], double& t, double x[3])
{
return this->IntersectWithLine(p1, p2, this->GetNormal(), this->GetOrigin(), t, x);
}
void vtkPlane::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Normal: (" << this->Normal[0] << ", "
<< this->Normal[1] << ", " << this->Normal[2] << ")\n";
os << indent << "Origin: (" << this->Origin[0] << ", "
<< this->Origin[1] << ", " << this->Origin[2] << ")\n";
}
|