1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkSphere.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkSphere.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
vtkStandardNewMacro(vtkSphere);
//----------------------------------------------------------------------------
// Construct sphere with center at (0,0,0) and radius=0.5.
vtkSphere::vtkSphere()
{
this->Radius = 0.5;
this->Center[0] = 0.0;
this->Center[1] = 0.0;
this->Center[2] = 0.0;
}
//----------------------------------------------------------------------------
// Evaluate sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2.
double vtkSphere::EvaluateFunction(double x[3])
{
return ( ((x[0] - this->Center[0]) * (x[0] - this->Center[0]) +
(x[1] - this->Center[1]) * (x[1] - this->Center[1]) +
(x[2] - this->Center[2]) * (x[2] - this->Center[2])) -
this->Radius*this->Radius );
}
//----------------------------------------------------------------------------
// Evaluate sphere gradient.
void vtkSphere::EvaluateGradient(double x[3], double n[3])
{
n[0] = 2.0 * (x[0] - this->Center[0]);
n[1] = 2.0 * (x[1] - this->Center[1]);
n[2] = 2.0 * (x[2] - this->Center[2]);
}
// The following methods are used to compute bounding spheres.
//
#define VTK_ASSIGN_POINT(_x,_y) {_x[0]=_y[0];_x[1]=_y[1];_x[2]=_y[2];}
//----------------------------------------------------------------------------
// Inspired by Graphics Gems Vol. I ("An Efficient Bounding Sphere" by Jack Ritter).
// The algorithm works in two parts: first an initial estimate of the largest sphere;
// second an adjustment to the sphere to make sure that it includes all the points.
// Typically this returns a bounding sphere that is ~5% larger than the minimal
// bounding sphere.
template <class T>
void vtkSphereComputeBoundingSphere(T *pts, vtkIdType numPts, T sphere[4],
vtkIdType hints[2])
{
sphere[0] = sphere[1] = sphere[2] = sphere[3] = 0.0;
if ( numPts < 1 )
{
return;
}
vtkIdType i;
T *p, d1[3], d2[3];
if ( hints )
{
p = pts + 3*hints[0];
VTK_ASSIGN_POINT(d1,p);
p = pts + 3*hints[1];
VTK_ASSIGN_POINT(d2,p);
}
else //no hints provided, compute an initial guess
{
T xMin[3], xMax[3], yMin[3], yMax[3], zMin[3], zMax[3];
xMin[0] = xMin[1] = xMin[2] = VTK_FLOAT_MAX;
yMin[0] = yMin[1] = yMin[2] = VTK_FLOAT_MAX;
zMin[0] = zMin[1] = zMin[2] = VTK_FLOAT_MAX;
xMax[0] = xMax[1] = xMax[2] = -VTK_FLOAT_MAX;
yMax[0] = yMax[1] = yMax[2] = -VTK_FLOAT_MAX;
zMax[0] = zMax[1] = zMax[2] = -VTK_FLOAT_MAX;
// First part: Estimate the points furthest apart to define the largest sphere.
// Find the points that span the greatest distance on the x-y-z axes. Use these
// two points to define a sphere centered between the two points.
for (p=pts, i=0; i<numPts; ++i, p+=3)
{
if (p[0] < xMin[0] ) VTK_ASSIGN_POINT(xMin,p);
if (p[0] > xMax[0] ) VTK_ASSIGN_POINT(xMax,p);
if (p[1] < yMin[1] ) VTK_ASSIGN_POINT(yMin,p);
if (p[1] > yMax[1] ) VTK_ASSIGN_POINT(yMax,p);
if (p[2] < zMin[2] ) VTK_ASSIGN_POINT(zMin,p);
if (p[2] > zMax[2] ) VTK_ASSIGN_POINT(zMax,p);
}
T xSpan = (xMax[0]-xMin[0])*(xMax[0]-xMin[0]) + (xMax[1]-xMin[1])*(xMax[1]-xMin[1]) +
(xMax[2]-xMin[2])*(xMax[2]-xMin[2]);
T ySpan = (yMax[0]-yMin[0])*(yMax[0]-yMin[0]) + (yMax[1]-yMin[1])*(yMax[1]-yMin[1]) +
(yMax[2]-yMin[2])*(yMax[2]-yMin[2]);
T zSpan = (zMax[0]-zMin[0])*(zMax[0]-zMin[0]) + (zMax[1]-zMin[1])*(zMax[1]-zMin[1]) +
(zMax[2]-zMin[2])*(zMax[2]-zMin[2]);
if ( xSpan > ySpan )
{
if ( xSpan > zSpan )
{
VTK_ASSIGN_POINT(d1,xMin);
VTK_ASSIGN_POINT(d2,xMax);
}
else
{
VTK_ASSIGN_POINT(d1,zMin);
VTK_ASSIGN_POINT(d2,zMax);
}
}
else //ySpan > xSpan
{
if ( ySpan > zSpan )
{
VTK_ASSIGN_POINT(d1,yMin);
VTK_ASSIGN_POINT(d2,yMax);
}
else
{
VTK_ASSIGN_POINT(d1,zMin);
VTK_ASSIGN_POINT(d2,zMax);
}
}
}//no hints provided
// Compute initial estimated sphere
sphere[0] = (d1[0]+d2[0]) / 2.0;
sphere[1] = (d1[1]+d2[1]) / 2.0;
sphere[2] = (d1[2]+d2[2]) / 2.0;
T r2 = vtkMath::Distance2BetweenPoints(d1,d2)/4.0;
sphere[3] = sqrt(r2);
// Second part: Make a pass over the points to make sure that they fit inside the sphere.
// If not, adjust the sphere to fit the point.
T dist, dist2, delta;
for (p=pts, i=0; i<numPts; ++i, p+=3)
{
dist2 = vtkMath::Distance2BetweenPoints(p,sphere);
if ( dist2 > r2 )
{
dist = sqrt(dist2);
sphere[3] = (sphere[3] + dist) / 2.0;
r2 = sphere[3]*sphere[3];
delta = dist - sphere[3];
sphere[0] = (sphere[3]*sphere[0] + delta*p[0]) / dist;
sphere[1] = (sphere[3]*sphere[1] + delta*p[1]) / dist;
sphere[2] = (sphere[3]*sphere[2] + delta*p[2]) / dist;
}
}
}
#undef VTK_ASSIGN_POINT
#define VTK_ASSIGN_SPHERE(_x,_y) {_x[0]=_y[0];_x[1]=_y[1];_x[2]=_y[2];_x[3]=_y[3];}
// An approximation to the bounding sphere of a set of spheres. The algorithm
// creates an iniitial approximation from two spheres that are expected to be
// the farthest apart (taking into accout their radius). A second pass may
// grow the bounding sphere if the remaining spheres are not contained within
// it. The hints[2] array indicates two spheres that are expected to be the
// farthest apart.
//----------------------------------------------------------------------------
template <class T>
void vtkSphereComputeBoundingSphere(T **spheres, vtkIdType numSpheres, T sphere[4],
vtkIdType hints[2])
{
if ( numSpheres < 1 )
{
sphere[0] = sphere[1] = sphere[2] = sphere[3] = 0.0;
return;
}
else if ( numSpheres == 1 )
{
VTK_ASSIGN_SPHERE(sphere,spheres[0]);
return;
}
// Okay two or more spheres
vtkIdType i, j;
T *s, s1[4], s2[4];
if ( hints )
{
s = spheres[hints[0]];
VTK_ASSIGN_SPHERE(s1,s);
s = spheres[hints[1]];
VTK_ASSIGN_SPHERE(s2,s);
}
else //no hints provided, compute an initial guess
{
T xMin[4], xMax[4], yMin[4], yMax[4], zMin[4], zMax[4];
xMin[0] = xMin[1] = xMin[2] = xMin[3] = VTK_FLOAT_MAX;
yMin[0] = yMin[1] = yMin[2] = yMin[3] = VTK_FLOAT_MAX;
zMin[0] = zMin[1] = zMin[2] = zMin[3] = VTK_FLOAT_MAX;
xMax[0] = xMax[1] = xMax[2] = xMax[3] = -VTK_FLOAT_MAX;
yMax[0] = yMax[1] = yMax[2] = yMax[3] = -VTK_FLOAT_MAX;
zMax[0] = zMax[1] = zMax[2] = zMax[3] = -VTK_FLOAT_MAX;
// First part: Estimate the points furthest apart to define the largest sphere.
// Find the points that span the greatest distance on the x-y-z axes. Use these
// two points to define a sphere centered between the two points.
for (i=0; i<numSpheres; ++i)
{
s = spheres[i];
if ((s[0]-s[3]) < xMin[0] ) VTK_ASSIGN_SPHERE(xMin,s);
if ((s[0]+s[3]) > xMax[0] ) VTK_ASSIGN_SPHERE(xMax,s);
if ((s[1]-s[3]) < yMin[1] ) VTK_ASSIGN_SPHERE(yMin,s);
if ((s[1]+s[3]) > yMax[1] ) VTK_ASSIGN_SPHERE(yMax,s);
if ((s[2]-s[3]) < zMin[2] ) VTK_ASSIGN_SPHERE(zMin,s);
if ((s[2]+s[3]) > zMax[2] ) VTK_ASSIGN_SPHERE(zMax,s);
}
T xSpan = (xMax[0]+xMax[3]-xMin[0]-xMin[3])*(xMax[0]+xMax[3]-xMin[0]-xMin[3]) +
(xMax[1]+xMax[3]-xMin[1]-xMin[3])*(xMax[1]+xMax[3]-xMin[1]-xMin[3]) +
(xMax[2]+xMax[3]-xMin[2]-xMin[3])*(xMax[2]+xMax[3]-xMin[2]-xMin[3]);
T ySpan = (yMax[0]+yMax[3]-yMin[0]-yMin[3])*(yMax[0]+yMax[3]-yMin[0]-yMin[3]) +
(yMax[1]+yMax[3]-yMin[1]-yMin[3])*(yMax[1]+yMax[3]-yMin[1]-yMin[3]) +
(yMax[2]+yMax[3]-yMin[2]-yMin[3])*(yMax[2]+yMax[3]-yMin[2]-yMin[3]);
T zSpan = (zMax[0]+zMax[3]-zMin[0]-zMin[3])*(zMax[0]+zMax[3]-zMin[0]-zMin[3]) +
(zMax[1]+zMax[3]-zMin[1]-zMin[3])*(zMax[1]+zMax[3]-zMin[1]-zMin[3]) +
(zMax[2]+zMax[3]-zMin[2]-zMin[3])*(zMax[2]+zMax[3]-zMin[2]-zMin[3]);
if ( xSpan > ySpan )
{
if ( xSpan > zSpan )
{
VTK_ASSIGN_SPHERE(s1,xMin);
VTK_ASSIGN_SPHERE(s2,xMax);
}
else
{
VTK_ASSIGN_SPHERE(s1,zMin);
VTK_ASSIGN_SPHERE(s2,zMax);
}
}
else //ySpan > xSpan
{
if ( ySpan > zSpan )
{
VTK_ASSIGN_SPHERE(s1,yMin);
VTK_ASSIGN_SPHERE(s2,yMax);
}
else
{
VTK_ASSIGN_SPHERE(s1,zMin);
VTK_ASSIGN_SPHERE(s2,zMax);
}
}
}//no hints provided
// Compute initial estimated sphere, take into account the radius of each sphere
T tmp, v[3], r2 = vtkMath::Distance2BetweenPoints(s1,s2)/4.0;
sphere[3] = sqrt(r2);
T t1 = -s1[3]/(2.0*sphere[3]);
T t2 = 1.0 + s2[3]/(2.0*sphere[3]);
for (i=0; i<3; ++i)
{
v[i] = s2[i] - s1[i];
tmp = s1[i] + t1*v[i];
s2[i] = s1[i] + t2*v[i];
s1[i] = tmp;
sphere[i] = (s1[i]+s2[i]) / 2.0;
}
r2 = vtkMath::Distance2BetweenPoints(s1,s2)/4.0;
sphere[3] = sqrt(r2);
// Second part: Make a pass over the points to make sure that they fit inside the sphere.
// If not, adjust the sphere to fit the point.
T dist, dist2, fac, sR2;
for (i=0; i<numSpheres; ++i)
{
s = spheres[i];
sR2 = s[3]*s[3];
dist2 = vtkMath::Distance2BetweenPoints(s,sphere);
if ( sR2 > dist2 ) //approximation to avoid square roots if possible
{
fac = 2.0*sR2;
}
else
{
fac = 2.0*dist2;
}
if ( (dist2 + fac + sR2) > r2 ) //approximate test
{
dist = sqrt(dist2);
if ( ((dist+s[3])*(dist+s[3])) > r2 ) //more accurate test
{
for (j=0; j<3; ++j)
{
v[j] = s[j] - sphere[j];
s1[j] = sphere[j] - (sphere[3]/dist)*v[j];
s2[j] = sphere[j] + (1.0+s[3]/dist)*v[j];
sphere[j] = (s1[j]+s2[j]) / 2.0;
}
r2 = vtkMath::Distance2BetweenPoints(s1,s2)/4.0;
sphere[3] = sqrt(r2);
}
}
}
}
#undef VTK_ASSIGN_SPHERE
// Type specific wrappers for the templated functions below
//----------------------------------------------------------------------------
void vtkSphere::ComputeBoundingSphere(float *pts, vtkIdType numPts, float sphere[4],
vtkIdType hints[2])
{
vtkSphereComputeBoundingSphere(pts,numPts,sphere,hints);
}
//----------------------------------------------------------------------------
void vtkSphere::ComputeBoundingSphere(double *pts, vtkIdType numPts, double sphere[4],
vtkIdType hints[2])
{
vtkSphereComputeBoundingSphere(pts,numPts,sphere,hints);
}
//----------------------------------------------------------------------------
void vtkSphere::ComputeBoundingSphere(float **spheres, vtkIdType numSpheres, float sphere[4],
vtkIdType hints[2])
{
vtkSphereComputeBoundingSphere(spheres,numSpheres,sphere,hints);
}
//----------------------------------------------------------------------------
void vtkSphere::ComputeBoundingSphere(double **spheres, vtkIdType numSpheres, double sphere[4],
vtkIdType hints[2])
{
vtkSphereComputeBoundingSphere(spheres,numSpheres,sphere,hints);
}
//----------------------------------------------------------------------------
void vtkSphere::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Radius: " << this->Radius << "\n";
os << indent << "Center: (" << this->Center[0] << ", "
<< this->Center[1] << ", " << this->Center[2] << ")\n";
}
|