1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkTreeDFSIterator.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
#include "vtkTreeDFSIterator.h"
#include "vtkIntArray.h"
#include "vtkObjectFactory.h"
#include "vtkTree.h"
#include <stack>
using std::stack;
struct vtkTreeDFSIteratorPosition
{
vtkTreeDFSIteratorPosition(vtkIdType vertex, vtkIdType index)
: Vertex(vertex), Index(index) { }
vtkIdType Vertex;
vtkIdType Index; // How far along we are in the vertex's edge array
};
class vtkTreeDFSIteratorInternals
{
public:
stack<vtkTreeDFSIteratorPosition> Stack;
};
vtkStandardNewMacro(vtkTreeDFSIterator);
vtkTreeDFSIterator::vtkTreeDFSIterator()
{
this->Internals = new vtkTreeDFSIteratorInternals();
this->Color = vtkIntArray::New();
this->Mode = 0;
this->CurRoot = -1;
}
vtkTreeDFSIterator::~vtkTreeDFSIterator()
{
delete this->Internals;
this->Internals = NULL;
if (this->Color)
{
this->Color->Delete();
this->Color = NULL;
}
}
void vtkTreeDFSIterator::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Mode: " << this->Mode << endl;
os << indent << "CurRoot: " << this->CurRoot << endl;
}
void vtkTreeDFSIterator::Initialize()
{
if (this->Tree == NULL)
{
return;
}
// Set all colors to white
this->Color->Resize(this->Tree->GetNumberOfVertices());
for (vtkIdType i = 0; i < this->Tree->GetNumberOfVertices(); i++)
{
this->Color->SetValue(i, this->WHITE);
}
if (this->StartVertex < 0)
{
this->StartVertex = this->Tree->GetRoot();
}
this->CurRoot = this->StartVertex;
while (this->Internals->Stack.size())
{
this->Internals->Stack.pop();
}
// Find the first item
if (this->Tree->GetNumberOfVertices() > 0)
{
this->NextId = this->NextInternal();
}
else
{
this->NextId = -1;
}
}
void vtkTreeDFSIterator::SetMode(int mode)
{
if (this->Mode != mode)
{
this->Mode = mode;
this->Initialize();
this->Modified();
}
}
vtkIdType vtkTreeDFSIterator::NextInternal()
{
while (this->Color->GetValue(this->StartVertex) != this->BLACK)
{
while (this->Internals->Stack.size() > 0)
{
// Pop the current position off the stack
vtkTreeDFSIteratorPosition pos = this->Internals->Stack.top();
this->Internals->Stack.pop();
//cout << "popped " << pos.Vertex << "," << pos.Index << " off the stack" << endl;
vtkIdType nchildren = this->Tree->GetNumberOfChildren(pos.Vertex);
while (pos.Index < nchildren &&
this->Color->GetValue(this->Tree->GetChild(pos.Vertex, pos.Index)) != this->WHITE)
{
pos.Index++;
}
if (pos.Index == nchildren)
{
//cout << "DFS coloring " << pos.Vertex << " black" << endl;
// Done with this vertex; make it black and leave it off the stack
this->Color->SetValue(pos.Vertex, this->BLACK);
if (this->Mode == this->FINISH)
{
//cout << "DFS finished " << pos.Vertex << endl;
return pos.Vertex;
}
// Done with the start vertex, so we are totally done!
if (pos.Vertex == this->StartVertex)
{
return -1;
}
}
else
{
// Not done with this vertex; put it back on the stack
this->Internals->Stack.push(pos);
// Found a white vertex; make it gray, add it to the stack
vtkIdType found = this->Tree->GetChild(pos.Vertex, pos.Index);
//cout << "DFS coloring " << found << " gray (adjacency)" << endl;
this->Color->SetValue(found, this->GRAY);
this->Internals->Stack.push(vtkTreeDFSIteratorPosition(found, 0));
if (this->Mode == this->DISCOVER)
{
//cout << "DFS adjacent discovery " << found << endl;
return found;
}
}
}
// Done with this component, so find a white vertex and start a new seedgeh
if (this->Color->GetValue(this->StartVertex) != this->BLACK)
{
while (true)
{
if (this->Color->GetValue(this->CurRoot) == this->WHITE)
{
// Found a new component; make it gray, put it on the stack
//cerr << "DFS coloring " << this->CurRoot << " gray (new component)" << endl;
this->Internals->Stack.push(vtkTreeDFSIteratorPosition(this->CurRoot, 0));
this->Color->SetValue(this->CurRoot, this->GRAY);
if (this->Mode == this->DISCOVER)
{
//cerr << "DFS new component discovery " << this->CurRoot << endl;
return this->CurRoot;
}
break;
}
else if (this->Color->GetValue(this->CurRoot) == this->GRAY)
{
vtkErrorMacro("There should be no gray vertices in the graph when starting a new component.");
}
this->CurRoot = (this->CurRoot + 1) % this->Tree->GetNumberOfVertices();
}
}
}
//cout << "DFS no more!" << endl;
return -1;
}
|