1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkVertex.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkVertex.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkIncrementalPointLocator.h"
#include "vtkPoints.h"
vtkStandardNewMacro(vtkVertex);
//----------------------------------------------------------------------------
// Construct the vertex with a single point.
vtkVertex::vtkVertex()
{
this->Points->SetNumberOfPoints(1);
this->PointIds->SetNumberOfIds(1);
for (int i = 0; i < 1; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i,0);
}
}
//----------------------------------------------------------------------------
// Make a new vtkVertex object with the same information as this object.
int vtkVertex::EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights)
{
double X[3];
subId = 0;
pcoords[1] = pcoords[2] = 0.0;
this->Points->GetPoint(0, X);
if (closestPoint)
{
closestPoint[0] = X[0]; closestPoint[1] = X[1]; closestPoint[2] = X[2];
}
dist2 = vtkMath::Distance2BetweenPoints(X,x);
weights[0] = 1.0;
if (dist2 == 0.0)
{
pcoords[0] = 0.0;
return 1;
}
else
{
pcoords[0] = -1.0;
return 0;
}
}
//----------------------------------------------------------------------------
void vtkVertex::EvaluateLocation(int& vtkNotUsed(subId),
double vtkNotUsed(pcoords)[3], double x[3],
double *weights)
{
this->Points->GetPoint(0, x);
weights[0] = 1.0;
}
//----------------------------------------------------------------------------
// Given parametric coordinates of a point, return the closest cell boundary,
// and whether the point is inside or outside of the cell. The cell boundary
// is defined by a list of points (pts) that specify a vertex (1D cell).
// If the return value of the method is != 0, then the point is inside the cell.
int vtkVertex::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
vtkIdList *pts)
{
pts->SetNumberOfIds(1);
pts->SetId(0,this->PointIds->GetId(0));
if ( pcoords[0] != 0.0 )
{
return 0;
}
else
{
return 1;
}
}
//----------------------------------------------------------------------------
// Generate contouring primitives. The scalar list cellScalars are
// scalar values at each cell point. The point locator is essentially a
// points list that merges points as they are inserted (i.e., prevents
// duplicates).
void vtkVertex::Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator,
vtkCellArray *verts,
vtkCellArray *vtkNotUsed(lines),
vtkCellArray *vtkNotUsed(polys),
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
{
if ( value == cellScalars->GetComponent(0,0) )
{
int newCellId;
vtkIdType pts[1];
pts[0] = locator->InsertNextPoint(this->Points->GetPoint(0));
if ( outPd )
{
outPd->CopyData(inPd,this->PointIds->GetId(0),pts[0]);
}
newCellId = verts->InsertNextCell(1,pts);
outCd->CopyData(inCd,cellId,newCellId);
}
}
//----------------------------------------------------------------------------
// Intersect with a ray. Return parametric coordinates (both line and cell)
// and global intersection coordinates, given ray definition and tolerance.
// The method returns non-zero value if intersection occurs.
int vtkVertex::IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId)
{
int i;
double X[3], ray[3], rayFactor, projXYZ[3];
subId = 0;
pcoords[1] = pcoords[2] = 0.0;
this->Points->GetPoint(0, X);
for (i=0; i<3; i++)
{
ray[i] = p2[i] - p1[i];
}
if (( rayFactor = vtkMath::Dot(ray,ray)) == 0.0 )
{
return 0;
}
//
// Project each point onto ray. Determine whether point is within tolerance.
//
t = (ray[0]*(X[0]-p1[0]) + ray[1]*(X[1]-p1[1]) + ray[2]*(X[2]-p1[2]))
/ rayFactor;
if ( t >= 0.0 && t <= 1.0 )
{
for (i=0; i<3; i++)
{
projXYZ[i] = p1[i] + t*ray[i];
if ( fabs(X[i]-projXYZ[i]) > tol )
{
break;
}
}
if ( i > 2 ) // within tolerance
{
pcoords[0] = 0.0;
x[0] = X[0]; x[1] = X[1]; x[2] = X[2];
return 1;
}
}
pcoords[0] = -1.0;
return 0;
}
//----------------------------------------------------------------------------
// Triangulate the vertex. This method fills pts and ptIds with information
// from the only point in the vertex.
int vtkVertex::Triangulate(int vtkNotUsed(index),vtkIdList *ptIds,
vtkPoints *pts)
{
pts->Reset();
ptIds->Reset();
pts->InsertPoint(0,this->Points->GetPoint(0));
ptIds->InsertId(0,this->PointIds->GetId(0));
return 1;
}
//----------------------------------------------------------------------------
// Get the derivative of the vertex. Returns (0.0, 0.0, 0.0) for all
// dimensions.
void vtkVertex::Derivatives(int vtkNotUsed(subId),
double vtkNotUsed(pcoords)[3],
double *vtkNotUsed(values),
int dim, double *derivs)
{
int i, idx;
for (i=0; i<dim; i++)
{
idx = i*dim;
derivs[idx] = 0.0;
derivs[idx+1] = 0.0;
derivs[idx+2] = 0.0;
}
}
//----------------------------------------------------------------------------
void vtkVertex::Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut)
{
double s, x[3];
int newCellId;
vtkIdType pts[1];
s = cellScalars->GetComponent(0,0);
if ( ( !insideOut && s > value) || (insideOut && s <= value) )
{
this->Points->GetPoint(0, x);
if ( locator->InsertUniquePoint(x, pts[0]) )
{
outPd->CopyData(inPd,this->PointIds->GetId(0),pts[0]);
}
newCellId = verts->InsertNextCell(1,pts);
outCd->CopyData(inCd,cellId,newCellId);
}
}
//----------------------------------------------------------------------------
// Compute interpolation functions
void vtkVertex::InterpolationFunctions(double [3], double weights[1])
{
weights[0] = 1.0;
}
//----------------------------------------------------------------------------
void vtkVertex::InterpolationDerivs(double [3], double derivs[3])
{
derivs[0] = 0.0;
derivs[1] = 0.0;
derivs[2] = 0.0;
}
//----------------------------------------------------------------------------
static double vtkVertexCellPCoords[3] = {0.0,0.0,0.0};
double *vtkVertex::GetParametricCoords()
{
return vtkVertexCellPCoords;
}
//----------------------------------------------------------------------------
void vtkVertex::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
}
|