File: vtkVertex.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (269 lines) | stat: -rw-r--r-- 7,899 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVertex.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkVertex.h"

#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkIncrementalPointLocator.h"
#include "vtkPoints.h"

vtkStandardNewMacro(vtkVertex);

//----------------------------------------------------------------------------
// Construct the vertex with a single point.
vtkVertex::vtkVertex()
{
  this->Points->SetNumberOfPoints(1);
  this->PointIds->SetNumberOfIds(1);
  for (int i = 0; i < 1; i++)
    {
    this->Points->SetPoint(i, 0.0, 0.0, 0.0);
    this->PointIds->SetId(i,0);
    }
}

//----------------------------------------------------------------------------
// Make a new vtkVertex object with the same information as this object.
int vtkVertex::EvaluatePosition(double x[3], double* closestPoint,
                                int& subId, double pcoords[3],
                                double& dist2, double *weights)
{
  double X[3];

  subId = 0;
  pcoords[1] = pcoords[2] = 0.0;

  this->Points->GetPoint(0, X);
  if (closestPoint)
    {
    closestPoint[0] = X[0]; closestPoint[1] = X[1]; closestPoint[2] = X[2];
    }

  dist2 = vtkMath::Distance2BetweenPoints(X,x);
  weights[0] = 1.0;

  if (dist2 == 0.0)
    {
    pcoords[0] = 0.0;
    return 1;
    }
  else
    {
    pcoords[0] = -1.0;
    return 0;
    }
}

//----------------------------------------------------------------------------
void vtkVertex::EvaluateLocation(int& vtkNotUsed(subId),
                                 double vtkNotUsed(pcoords)[3], double x[3],
                                 double *weights)
{
  this->Points->GetPoint(0, x);

  weights[0] = 1.0;
}

//----------------------------------------------------------------------------
// Given parametric coordinates of a point, return the closest cell boundary,
// and whether the point is inside or outside of the cell. The cell boundary
// is defined by a list of points (pts) that specify a vertex (1D cell).
// If the return value of the method is != 0, then the point is inside the cell.
int vtkVertex::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
                            vtkIdList *pts)
{

  pts->SetNumberOfIds(1);
  pts->SetId(0,this->PointIds->GetId(0));

  if ( pcoords[0] != 0.0 )
    {
    return 0;
    }
  else
    {
    return 1;
    }

}

//----------------------------------------------------------------------------
// Generate contouring primitives. The scalar list cellScalars are
// scalar values at each cell point. The point locator is essentially a
// points list that merges points as they are inserted (i.e., prevents
// duplicates).
void vtkVertex::Contour(double value, vtkDataArray *cellScalars,
                        vtkIncrementalPointLocator *locator,
                        vtkCellArray *verts,
                        vtkCellArray *vtkNotUsed(lines),
                        vtkCellArray *vtkNotUsed(polys),
                        vtkPointData *inPd, vtkPointData *outPd,
                        vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
{
  if ( value == cellScalars->GetComponent(0,0) )
    {
    int newCellId;
    vtkIdType pts[1];
    pts[0] = locator->InsertNextPoint(this->Points->GetPoint(0));
    if ( outPd )
      {
      outPd->CopyData(inPd,this->PointIds->GetId(0),pts[0]);
      }
    newCellId = verts->InsertNextCell(1,pts);
    outCd->CopyData(inCd,cellId,newCellId);
    }
}

//----------------------------------------------------------------------------
// Intersect with a ray. Return parametric coordinates (both line and cell)
// and global intersection coordinates, given ray definition and tolerance.
// The method returns non-zero value if intersection occurs.
int vtkVertex::IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                                double x[3], double pcoords[3], int& subId)
{
  int i;
  double X[3], ray[3], rayFactor, projXYZ[3];

  subId = 0;
  pcoords[1] = pcoords[2] = 0.0;

  this->Points->GetPoint(0, X);

  for (i=0; i<3; i++)
    {
    ray[i] = p2[i] - p1[i];
    }
  if (( rayFactor = vtkMath::Dot(ray,ray)) == 0.0 )
    {
    return 0;
    }
  //
  //  Project each point onto ray. Determine whether point is within tolerance.
  //
  t = (ray[0]*(X[0]-p1[0]) + ray[1]*(X[1]-p1[1]) + ray[2]*(X[2]-p1[2]))
      / rayFactor;

  if ( t >= 0.0 && t <= 1.0 )
    {
    for (i=0; i<3; i++)
      {
      projXYZ[i] = p1[i] + t*ray[i];
      if ( fabs(X[i]-projXYZ[i]) > tol )
        {
        break;
        }
      }

    if ( i > 2 ) // within tolerance
      {
      pcoords[0] = 0.0;
      x[0] = X[0]; x[1] = X[1]; x[2] = X[2];
      return 1;
      }
    }

  pcoords[0] = -1.0;
  return 0;
}

//----------------------------------------------------------------------------
// Triangulate the vertex. This method fills pts and ptIds with information
// from the only point in the vertex.
int vtkVertex::Triangulate(int vtkNotUsed(index),vtkIdList *ptIds,
                           vtkPoints *pts)
{
  pts->Reset();
  ptIds->Reset();
  pts->InsertPoint(0,this->Points->GetPoint(0));
  ptIds->InsertId(0,this->PointIds->GetId(0));

  return 1;
}

//----------------------------------------------------------------------------
// Get the derivative of the vertex. Returns (0.0, 0.0, 0.0) for all
// dimensions.
void vtkVertex::Derivatives(int vtkNotUsed(subId),
                            double vtkNotUsed(pcoords)[3],
                            double *vtkNotUsed(values),
                            int dim, double *derivs)
{
  int i, idx;

  for (i=0; i<dim; i++)
    {
    idx = i*dim;
    derivs[idx] = 0.0;
    derivs[idx+1] = 0.0;
    derivs[idx+2] = 0.0;
    }
}

//----------------------------------------------------------------------------
void vtkVertex::Clip(double value, vtkDataArray *cellScalars,
                     vtkIncrementalPointLocator *locator, vtkCellArray *verts,
                     vtkPointData *inPd, vtkPointData *outPd,
                     vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
                     int insideOut)
{
  double s, x[3];
  int newCellId;
  vtkIdType pts[1];

  s = cellScalars->GetComponent(0,0);

  if ( ( !insideOut && s > value) || (insideOut && s <= value) )
    {
    this->Points->GetPoint(0, x);
    if ( locator->InsertUniquePoint(x, pts[0]) )
      {
      outPd->CopyData(inPd,this->PointIds->GetId(0),pts[0]);
      }
    newCellId = verts->InsertNextCell(1,pts);
    outCd->CopyData(inCd,cellId,newCellId);
    }

}

//----------------------------------------------------------------------------
// Compute interpolation functions
void vtkVertex::InterpolationFunctions(double [3], double weights[1])
{
  weights[0] = 1.0;
}

//----------------------------------------------------------------------------
void vtkVertex::InterpolationDerivs(double [3], double derivs[3])
{
  derivs[0] = 0.0;
  derivs[1] = 0.0;
  derivs[2] = 0.0;
}

//----------------------------------------------------------------------------
static double vtkVertexCellPCoords[3] = {0.0,0.0,0.0};
double *vtkVertex::GetParametricCoords()
{
  return vtkVertexCellPCoords;
}

//----------------------------------------------------------------------------
void vtkVertex::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
}