1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
#!/usr/bin/env python
import vtk
from vtk.test import Testing
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
#
# The dataset read by this exercise ("combVectors.vtk") has field data
# associated with the pointdata, namely two vector fields. In this exercise,
# you will convert both sets of field data into attribute data. Mappers only
# process attribute data, not field data. So we must convert the field data to
# attribute data in order to display it. (You'll need to determine the "names"
# of the two vector fields in the field data.)
#
# If there is time remaining, you might consider adding a programmable filter
# to convert the two sets of vectors into a single scalar field, representing
# the angle between the two vector fields.
#
# You will most likely use vtkFieldDataToAttributeDataFilter, vtkHedgeHog,
# and vtkProgrammableAttributeDataFilter.
#
# Create the RenderWindow, Renderer and interactor
#
ren1 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.SetMultiSamples(0)
renWin.AddRenderer(ren1)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# create pipeline
#
# get the pressure gradient vector field
pl3d_gradient = vtk.vtkMultiBlockPLOT3DReader()
pl3d_gradient.SetXYZFileName("" + str(VTK_DATA_ROOT) + "/Data/combxyz.bin")
pl3d_gradient.SetQFileName("" + str(VTK_DATA_ROOT) + "/Data/combq.bin")
pl3d_gradient.SetScalarFunctionNumber(100)
pl3d_gradient.SetVectorFunctionNumber(210)
pl3d_gradient.Update()
pl3d_g_output = pl3d_gradient.GetOutput().GetBlock(0)
# get the velocity vector field
pl3d_velocity = vtk.vtkMultiBlockPLOT3DReader()
pl3d_velocity.SetXYZFileName("" + str(VTK_DATA_ROOT) + "/Data/combxyz.bin")
pl3d_velocity.SetQFileName("" + str(VTK_DATA_ROOT) + "/Data/combq.bin")
pl3d_velocity.SetScalarFunctionNumber(100)
pl3d_velocity.SetVectorFunctionNumber(200)
pl3d_velocity.Update()
pl3d_v_output = pl3d_velocity.GetOutput().GetBlock(0)
# contour the scalar fields
contour = vtk.vtkContourFilter()
contour.SetInputData(pl3d_g_output)
contour.SetValue(0,0.225)
# probe the vector fields to get data at the contour surface
probe_gradient = vtk.vtkProbeFilter()
probe_gradient.SetInputConnection(contour.GetOutputPort())
probe_gradient.SetSourceData(pl3d_g_output)
probe_velocity = vtk.vtkProbeFilter()
probe_velocity.SetInputConnection(contour.GetOutputPort())
probe_velocity.SetSourceData(pl3d_v_output)
#
# To display the vector fields, we use vtkHedgeHog to create lines.
#
velocity = vtk.vtkHedgeHog()
velocity.SetInputConnection(probe_velocity.GetOutputPort())
velocity.SetScaleFactor(0.0015)
pressureGradient = vtk.vtkHedgeHog()
pressureGradient.SetInputConnection(probe_gradient.GetOutputPort())
pressureGradient.SetScaleFactor(0.00002)
def ExecuteDot (__vtk__temp0=0,__vtk__temp1=0):
# proc for ProgrammableAttributeDataFilter. Note the use of "double()"
# in the calculations. This protects us from Tcl using ints and
# overflowing.
inputs = dotProduct.GetInputList()
input0 = inputs.GetDataSet(0)
input1 = inputs.GetDataSet(1)
numPts = input0.GetNumberOfPoints()
vectors0 = input0.GetPointData().GetVectors()
vectors1 = input1.GetPointData().GetVectors()
scalars = vtk.vtkFloatArray()
i = 0
while i < numPts:
v0 = vectors0.GetTuple3(i)
v1 = vectors1.GetTuple3(i)
v0x = lindex(v0,0)
v0y = lindex(v0,1)
v0z = lindex(v0,2)
v1x = lindex(v1,0)
v1y = lindex(v1,1)
v1z = lindex(v1,2)
l0 = expr.expr(globals(), locals(),["double","(","v0x",")*","double","(","v0x",")","+","double","(","v0y",")*","double","(","v0y",")","+","double","(","v0z",")*","double","(","v0z",")"])
l1 = expr.expr(globals(), locals(),["double","(","v1x",")*","double","(","v1x",")","+","double","(","v1y",")*","double","(","v1y",")","+","double","(","v1z",")*","double","(","v1z",")"])
l0 = expr.expr(globals(), locals(),["sqrt","(","double","(","l0","))"])
l1 = expr.expr(globals(), locals(),["sqrt","(","double","(","l1","))"])
if (l0 > 0.0 and l1 > 0.0):
d = expr.expr(globals(), locals(),["(","double","(","v0x",")*","double","(","v1x",")","+","double","(","v0y",")*","double","(","v1y",")","+","double","(","v0z",")*","double","(","v1z","))/(","l0","*","l1",")"])
pass
else:
d = 0.0
pass
scalars.InsertValue(i,d)
i = i + 1
dotProduct.GetOutput().GetPointData().SetScalars(scalars)
del scalars
#
# We use the ProgrammableAttributeDataFilter to compute the cosine
# of the angle between the two vector fields (i.e. the dot product
# normalized by the product of the vector lengths).
#
#
dotProduct = vtk.vtkProgrammableAttributeDataFilter()
dotProduct.SetInputConnection(probe_velocity.GetOutputPort())
dotProduct.AddInput(probe_velocity.GetOutput())
dotProduct.AddInput(probe_gradient.GetOutput())
dotProduct.SetExecuteMethod(ExecuteDot)
#
# Create the mappers and actors. Note the call to GetPolyDataOutput when
# setting up the mapper for the ProgrammableAttributeDataFilter
#
velocityMapper = vtk.vtkPolyDataMapper()
velocityMapper.SetInputConnection(velocity.GetOutputPort())
velocityMapper.ScalarVisibilityOff()
velocityActor = vtk.vtkLODActor()
velocityActor.SetMapper(velocityMapper)
velocityActor.SetNumberOfCloudPoints(1000)
velocityActor.GetProperty().SetColor(1,0,0)
pressureGradientMapper = vtk.vtkPolyDataMapper()
pressureGradientMapper.SetInputConnection(pressureGradient.GetOutputPort())
pressureGradientMapper.ScalarVisibilityOff()
pressureGradientActor = vtk.vtkLODActor()
pressureGradientActor.SetMapper(pressureGradientMapper)
pressureGradientActor.SetNumberOfCloudPoints(1000)
pressureGradientActor.GetProperty().SetColor(0,1,0)
dotMapper = vtk.vtkPolyDataMapper()
dotMapper.SetInputConnection(dotProduct.GetOutputPort())
dotMapper.SetScalarRange(-1,1)
dotActor = vtk.vtkLODActor()
dotActor.SetMapper(dotMapper)
dotActor.SetNumberOfCloudPoints(1000)
#
# The PLOT3DReader is used to draw the outline of the original dataset.
#
pl3d = vtk.vtkMultiBlockPLOT3DReader()
pl3d.SetXYZFileName("" + str(VTK_DATA_ROOT) + "/Data/combxyz.bin")
pl3d.Update()
pl3d_output = pl3d.GetOutput().GetBlock(0)
outline = vtk.vtkStructuredGridOutlineFilter()
outline.SetInputData(pl3d_output)
outlineMapper = vtk.vtkPolyDataMapper()
outlineMapper.SetInputConnection(outline.GetOutputPort())
outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)
outlineActor.GetProperty().SetColor(0,0,0)
#
# Add the actors to the renderer, set the background and size
#
ren1.AddActor(outlineActor)
ren1.AddActor(velocityActor)
ren1.AddActor(pressureGradientActor)
ren1.AddActor(dotActor)
ren1.SetBackground(1,1,1)
renWin.SetSize(500,500)
#ren1 SetBackground 0.1 0.2 0.4
cam1 = ren1.GetActiveCamera()
cam1.SetClippingRange(3.95297,50)
cam1.SetFocalPoint(9.71821,0.458166,29.3999)
cam1.SetPosition(-21.6807,-22.6387,35.9759)
cam1.SetViewUp(-0.0158865,0.293715,0.955761)
# render the image
#
renWin.Render()
renWin.SetWindowName("Multidimensional Visualization Exercise")
# prevent the tk window from showing up then start the event loop
# --- end of script --
|