1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageFFT.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageFFT.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkStandardNewMacro(vtkImageFFT);
//----------------------------------------------------------------------------
// This extent of the components changes to real and imaginary values.
int vtkImageFFT::IterativeRequestInformation(
vtkInformation* vtkNotUsed(input), vtkInformation* output)
{
vtkDataObject::SetPointDataActiveScalarInfo(output, VTK_DOUBLE, 2);
return 1;
}
//----------------------------------------------------------------------------
static void vtkImageFFTInternalRequestUpdateExtent(int *inExt, int *outExt,
int *wExt, int iteration)
{
memcpy(inExt, outExt, 6 * sizeof(int));
inExt[iteration*2] = wExt[iteration*2];
inExt[iteration*2 + 1] = wExt[iteration*2 + 1];
}
//----------------------------------------------------------------------------
// This method tells the superclass that the whole input array is needed
// to compute any output region.
int vtkImageFFT::IterativeRequestUpdateExtent(
vtkInformation* input, vtkInformation* output)
{
int *outExt = output->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT());
int *wExt = input->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
int inExt[6];
vtkImageFFTInternalRequestUpdateExtent(inExt,outExt,wExt,this->Iteration);
input->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);
return 1;
}
//----------------------------------------------------------------------------
// This templated execute method handles any type input, but the output
// is always doubles.
template <class T>
void vtkImageFFTExecute(vtkImageFFT *self,
vtkImageData *inData, int inExt[6], T *inPtr,
vtkImageData *outData, int outExt[6], double *outPtr,
int id)
{
vtkImageComplex *inComplex;
vtkImageComplex *outComplex;
vtkImageComplex *pComplex;
//
int inMin0, inMax0;
vtkIdType inInc0, inInc1, inInc2;
T *inPtr0, *inPtr1, *inPtr2;
//
int outMin0, outMax0, outMin1, outMax1, outMin2, outMax2;
vtkIdType outInc0, outInc1, outInc2;
double *outPtr0, *outPtr1, *outPtr2;
//
int idx0, idx1, idx2, inSize0, numberOfComponents;
unsigned long count = 0;
unsigned long target;
double startProgress;
startProgress =
self->GetIteration()/static_cast<double>(self->GetNumberOfIterations());
// Reorder axes (The outs here are just placeholdes
self->PermuteExtent(inExt, inMin0, inMax0, outMin1,outMax1,outMin2,outMax2);
self->PermuteExtent(outExt, outMin0,outMax0,outMin1,outMax1,outMin2,outMax2);
self->PermuteIncrements(inData->GetIncrements(), inInc0, inInc1, inInc2);
self->PermuteIncrements(outData->GetIncrements(), outInc0, outInc1, outInc2);
inSize0 = inMax0 - inMin0 + 1;
// Input has to have real components at least.
numberOfComponents = inData->GetNumberOfScalarComponents();
if (numberOfComponents < 1)
{
vtkGenericWarningMacro("No real components");
return;
}
// Allocate the arrays of complex numbers
inComplex = new vtkImageComplex[inSize0];
outComplex = new vtkImageComplex[inSize0];
target = static_cast<unsigned long>((outMax2-outMin2+1)*(outMax1-outMin1+1)
* self->GetNumberOfIterations() / 50.0);
target++;
// loop over other axes
inPtr2 = inPtr;
outPtr2 = outPtr;
for (idx2 = outMin2; idx2 <= outMax2; ++idx2)
{
inPtr1 = inPtr2;
outPtr1 = outPtr2;
for (idx1 = outMin1; !self->AbortExecute && idx1 <= outMax1; ++idx1)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target) + startProgress);
}
count++;
}
// copy into complex numbers
inPtr0 = inPtr1;
pComplex = inComplex;
for (idx0 = inMin0; idx0 <= inMax0; ++idx0)
{
pComplex->Real = static_cast<double>(*inPtr0);
pComplex->Imag = 0.0;
if (numberOfComponents > 1)
{ // yes we have an imaginary input
pComplex->Imag = static_cast<double>(inPtr0[1]);;
}
inPtr0 += inInc0;
++pComplex;
}
// Call the method that performs the fft
self->ExecuteFft(inComplex, outComplex, inSize0);
// copy into output
outPtr0 = outPtr1;
pComplex = outComplex + (outMin0 - inMin0);
for (idx0 = outMin0; idx0 <= outMax0; ++idx0)
{
*outPtr0 = static_cast<double>(pComplex->Real);
outPtr0[1] = static_cast<double>(pComplex->Imag);
outPtr0 += outInc0;
++pComplex;
}
inPtr1 += inInc1;
outPtr1 += outInc1;
}
inPtr2 += inInc2;
outPtr2 += outInc2;
}
delete [] inComplex;
delete [] outComplex;
}
//----------------------------------------------------------------------------
// This method is passed input and output Datas, and executes the fft
// algorithm to fill the output from the input.
// Not threaded yet.
void vtkImageFFT::ThreadedRequestData(
vtkInformation* vtkNotUsed( request ),
vtkInformationVector** inputVector,
vtkInformationVector* vtkNotUsed( outputVector ),
vtkImageData ***inDataVec,
vtkImageData **outDataVec,
int outExt[6],
int threadId)
{
vtkImageData* inData = inDataVec[0][0];
vtkImageData* outData = outDataVec[0];
void *inPtr, *outPtr;
int inExt[6];
int *wExt = inputVector[0]->GetInformationObject(0)->Get(
vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
vtkImageFFTInternalRequestUpdateExtent(inExt,outExt,wExt,this->Iteration);
inPtr = inData->GetScalarPointerForExtent(inExt);
outPtr = outData->GetScalarPointerForExtent(outExt);
// this filter expects that the output be doubles.
if (outData->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro(<< "Execute: Output must be be type double.");
return;
}
// this filter expects input to have 1 or two components
if (outData->GetNumberOfScalarComponents() != 1 &&
outData->GetNumberOfScalarComponents() != 2)
{
vtkErrorMacro(<< "Execute: Cannot handle more than 2 components");
return;
}
// choose which templated function to call.
switch (inData->GetScalarType())
{
vtkTemplateMacro(vtkImageFFTExecute(this, inData, inExt,
static_cast<VTK_TT *>(inPtr), outData,
outExt,
static_cast<double *>(outPtr),
threadId));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
//----------------------------------------------------------------------------
// For streaming and threads. Splits output update extent into num pieces.
// This method needs to be called num times. Results must not overlap for
// consistent starting extent. Subclass can override this method.
// This method returns the number of peices resulting from a successful split.
// This can be from 1 to "total".
// If 1 is returned, the extent cannot be split.
int vtkImageFFT::SplitExtent(int splitExt[6], int startExt[6],
int num, int total)
{
int splitAxis;
int min, max;
vtkDebugMacro("SplitExtent: ( " << startExt[0] << ", " << startExt[1] << ", "
<< startExt[2] << ", " << startExt[3] << ", "
<< startExt[4] << ", " << startExt[5] << "), "
<< num << " of " << total);
// start with same extent
memcpy(splitExt, startExt, 6 * sizeof(int));
splitAxis = 2;
min = startExt[4];
max = startExt[5];
while ((splitAxis == this->Iteration) || (min == max))
{
splitAxis--;
if (splitAxis < 0)
{ // cannot split
vtkDebugMacro(" Cannot Split");
return 1;
}
min = startExt[splitAxis*2];
max = startExt[splitAxis*2+1];
}
// determine the actual number of pieces that will be generated
if ((max - min + 1) < total)
{
total = max - min + 1;
}
if (num >= total)
{
vtkDebugMacro(" SplitRequest (" << num
<< ") larger than total: " << total);
return total;
}
// determine the extent of the piece
splitExt[splitAxis*2] = min + (max - min + 1)*num/total;
if (num == total - 1)
{
splitExt[splitAxis*2+1] = max;
}
else
{
splitExt[splitAxis*2+1] = (min-1) + (max - min + 1)*(num+1)/total;
}
vtkDebugMacro(" Split Piece: ( " <<splitExt[0]<< ", " <<splitExt[1]<< ", "
<< splitExt[2] << ", " << splitExt[3] << ", "
<< splitExt[4] << ", " << splitExt[5] << ")");
return total;
}
|