File: vtkImageFFT.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (308 lines) | stat: -rw-r--r-- 9,412 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImageFFT.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkImageFFT.h"

#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"

#include <math.h>

vtkStandardNewMacro(vtkImageFFT);

//----------------------------------------------------------------------------
// This extent of the components changes to real and imaginary values.
int vtkImageFFT::IterativeRequestInformation(
  vtkInformation* vtkNotUsed(input), vtkInformation* output)
{
  vtkDataObject::SetPointDataActiveScalarInfo(output, VTK_DOUBLE, 2);
  return 1;
}

//----------------------------------------------------------------------------
static void vtkImageFFTInternalRequestUpdateExtent(int *inExt, int *outExt,
                                                   int *wExt, int iteration)
{
  memcpy(inExt, outExt, 6 * sizeof(int));
  inExt[iteration*2] = wExt[iteration*2];
  inExt[iteration*2 + 1] = wExt[iteration*2 + 1];
}

//----------------------------------------------------------------------------
// This method tells the superclass that the whole input array is needed
// to compute any output region.
int vtkImageFFT::IterativeRequestUpdateExtent(
  vtkInformation* input, vtkInformation* output)
{
  int *outExt = output->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT());
  int *wExt = input->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
  int inExt[6];
  vtkImageFFTInternalRequestUpdateExtent(inExt,outExt,wExt,this->Iteration);
  input->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);

  return 1;
}

//----------------------------------------------------------------------------
// This templated execute method handles any type input, but the output
// is always doubles.
template <class T>
void vtkImageFFTExecute(vtkImageFFT *self,
                        vtkImageData *inData, int inExt[6], T *inPtr,
                        vtkImageData *outData, int outExt[6], double *outPtr,
                        int id)
{
  vtkImageComplex *inComplex;
  vtkImageComplex *outComplex;
  vtkImageComplex *pComplex;
  //
  int inMin0, inMax0;
  vtkIdType inInc0, inInc1, inInc2;
  T *inPtr0, *inPtr1, *inPtr2;
  //
  int outMin0, outMax0, outMin1, outMax1, outMin2, outMax2;
  vtkIdType outInc0, outInc1, outInc2;
  double *outPtr0, *outPtr1, *outPtr2;
  //
  int idx0, idx1, idx2, inSize0, numberOfComponents;
  unsigned long count = 0;
  unsigned long target;
  double startProgress;

  startProgress =
    self->GetIteration()/static_cast<double>(self->GetNumberOfIterations());

  // Reorder axes (The outs here are just placeholdes
  self->PermuteExtent(inExt, inMin0, inMax0, outMin1,outMax1,outMin2,outMax2);
  self->PermuteExtent(outExt, outMin0,outMax0,outMin1,outMax1,outMin2,outMax2);
  self->PermuteIncrements(inData->GetIncrements(), inInc0, inInc1, inInc2);
  self->PermuteIncrements(outData->GetIncrements(), outInc0, outInc1, outInc2);

  inSize0 = inMax0 - inMin0 + 1;

  // Input has to have real components at least.
  numberOfComponents = inData->GetNumberOfScalarComponents();
  if (numberOfComponents < 1)
    {
    vtkGenericWarningMacro("No real components");
    return;
    }

  // Allocate the arrays of complex numbers
  inComplex = new vtkImageComplex[inSize0];
  outComplex = new vtkImageComplex[inSize0];

  target = static_cast<unsigned long>((outMax2-outMin2+1)*(outMax1-outMin1+1)
                                      * self->GetNumberOfIterations() / 50.0);
  target++;

  // loop over other axes
  inPtr2 = inPtr;
  outPtr2 = outPtr;
  for (idx2 = outMin2; idx2 <= outMax2; ++idx2)
    {
    inPtr1 = inPtr2;
    outPtr1 = outPtr2;
    for (idx1 = outMin1; !self->AbortExecute && idx1 <= outMax1; ++idx1)
      {
      if (!id)
        {
        if (!(count%target))
          {
          self->UpdateProgress(count/(50.0*target) + startProgress);
          }
        count++;
        }
      // copy into complex numbers
      inPtr0 = inPtr1;
      pComplex = inComplex;
      for (idx0 = inMin0; idx0 <= inMax0; ++idx0)
        {
        pComplex->Real = static_cast<double>(*inPtr0);
        pComplex->Imag = 0.0;
        if (numberOfComponents > 1)
          { // yes we have an imaginary input
          pComplex->Imag = static_cast<double>(inPtr0[1]);;
          }
        inPtr0 += inInc0;
        ++pComplex;
        }

      // Call the method that performs the fft
      self->ExecuteFft(inComplex, outComplex, inSize0);

      // copy into output
      outPtr0 = outPtr1;
      pComplex = outComplex + (outMin0 - inMin0);
      for (idx0 = outMin0; idx0 <= outMax0; ++idx0)
        {
        *outPtr0 = static_cast<double>(pComplex->Real);
        outPtr0[1] = static_cast<double>(pComplex->Imag);
        outPtr0 += outInc0;
        ++pComplex;
        }
      inPtr1 += inInc1;
      outPtr1 += outInc1;
      }
    inPtr2 += inInc2;
    outPtr2 += outInc2;
    }

  delete [] inComplex;
  delete [] outComplex;
}


//----------------------------------------------------------------------------
// This method is passed input and output Datas, and executes the fft
// algorithm to fill the output from the input.
// Not threaded yet.
void vtkImageFFT::ThreadedRequestData(
  vtkInformation* vtkNotUsed( request ),
  vtkInformationVector** inputVector,
  vtkInformationVector* vtkNotUsed( outputVector ),
  vtkImageData ***inDataVec,
  vtkImageData **outDataVec,
  int outExt[6],
  int threadId)
{
  vtkImageData* inData = inDataVec[0][0];
  vtkImageData* outData = outDataVec[0];
  void *inPtr, *outPtr;
  int inExt[6];
  int *wExt = inputVector[0]->GetInformationObject(0)->Get(
    vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
  vtkImageFFTInternalRequestUpdateExtent(inExt,outExt,wExt,this->Iteration);

  inPtr = inData->GetScalarPointerForExtent(inExt);
  outPtr = outData->GetScalarPointerForExtent(outExt);

  // this filter expects that the output be doubles.
  if (outData->GetScalarType() != VTK_DOUBLE)
    {
    vtkErrorMacro(<< "Execute: Output must be be type double.");
    return;
    }

  // this filter expects input to have 1 or two components
  if (outData->GetNumberOfScalarComponents() != 1 &&
      outData->GetNumberOfScalarComponents() != 2)
    {
    vtkErrorMacro(<< "Execute: Cannot handle more than 2 components");
    return;
    }

  // choose which templated function to call.
  switch (inData->GetScalarType())
    {
    vtkTemplateMacro(vtkImageFFTExecute(this, inData, inExt,
                                        static_cast<VTK_TT *>(inPtr), outData,
                                        outExt,
                                        static_cast<double *>(outPtr),
                                        threadId));
    default:
      vtkErrorMacro(<< "Execute: Unknown ScalarType");
      return;
    }
}



//----------------------------------------------------------------------------
// For streaming and threads.  Splits output update extent into num pieces.
// This method needs to be called num times.  Results must not overlap for
// consistent starting extent.  Subclass can override this method.
// This method returns the number of peices resulting from a successful split.
// This can be from 1 to "total".
// If 1 is returned, the extent cannot be split.
int vtkImageFFT::SplitExtent(int splitExt[6], int startExt[6],
                             int num, int total)
{
  int splitAxis;
  int min, max;

  vtkDebugMacro("SplitExtent: ( " << startExt[0] << ", " << startExt[1] << ", "
                << startExt[2] << ", " << startExt[3] << ", "
                << startExt[4] << ", " << startExt[5] << "), "
                << num << " of " << total);

  // start with same extent
  memcpy(splitExt, startExt, 6 * sizeof(int));

  splitAxis = 2;
  min = startExt[4];
  max = startExt[5];
  while ((splitAxis == this->Iteration) || (min == max))
    {
    splitAxis--;
    if (splitAxis < 0)
      { // cannot split
      vtkDebugMacro("  Cannot Split");
      return 1;
      }
    min = startExt[splitAxis*2];
    max = startExt[splitAxis*2+1];
    }

  // determine the actual number of pieces that will be generated
  if ((max - min + 1) < total)
    {
    total = max - min + 1;
    }

  if (num >= total)
    {
    vtkDebugMacro("  SplitRequest (" << num
                  << ") larger than total: " << total);
    return total;
    }

  // determine the extent of the piece
  splitExt[splitAxis*2] = min + (max - min + 1)*num/total;
  if (num == total - 1)
    {
    splitExt[splitAxis*2+1] = max;
    }
  else
    {
    splitExt[splitAxis*2+1] = (min-1) + (max - min + 1)*(num+1)/total;
    }

  vtkDebugMacro("  Split Piece: ( " <<splitExt[0]<< ", " <<splitExt[1]<< ", "
                << splitExt[2] << ", " << splitExt[3] << ", "
                << splitExt[4] << ", " << splitExt[5] << ")");

  return total;
}