1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageEuclideanToPolar.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageEuclideanToPolar.h"
#include "vtkMath.h"
#include "vtkImageData.h"
#include "vtkImageProgressIterator.h"
#include "vtkObjectFactory.h"
#include <math.h>
vtkStandardNewMacro(vtkImageEuclideanToPolar);
//----------------------------------------------------------------------------
vtkImageEuclideanToPolar::vtkImageEuclideanToPolar()
{
this->SetNumberOfInputPorts(1);
this->SetNumberOfOutputPorts(1);
this->ThetaMaximum = 255.0;
}
//----------------------------------------------------------------------------
// This templated function executes the filter for any type of data.
template <class T>
void vtkImageEuclideanToPolarExecute(vtkImageEuclideanToPolar *self,
vtkImageData *inData,
vtkImageData *outData,
int outExt[6], int id, T *)
{
vtkImageIterator<T> inIt(inData, outExt);
vtkImageProgressIterator<T> outIt(outData, outExt, self, id);
double X, Y, Theta, R;
double thetaMax = self->GetThetaMaximum();
// find the region to loop over
int maxC = inData->GetNumberOfScalarComponents();
// Loop through output pixels
while (!outIt.IsAtEnd())
{
T* inSI = inIt.BeginSpan();
T* outSI = outIt.BeginSpan();
T* outSIEnd = outIt.EndSpan();
while (outSI != outSIEnd)
{
// Pixel operation
X = static_cast<double>(*inSI);
Y = static_cast<double>(inSI[1]);
if ((X == 0.0) && (Y == 0.0))
{
Theta = 0.0;
R = 0.0;
}
else
{
Theta = atan2(Y, X) * thetaMax / (2.0 * vtkMath::Pi());
if (Theta < 0.0)
{
Theta += thetaMax;
}
R = sqrt(X*X + Y*Y);
}
*outSI = static_cast<T>(Theta);
outSI[1] = static_cast<T>(R);
inSI += maxC;
outSI += maxC;
}
inIt.NextSpan();
outIt.NextSpan();
}
}
//----------------------------------------------------------------------------
void vtkImageEuclideanToPolar::ThreadedExecute (vtkImageData *inData,
vtkImageData *outData,
int outExt[6], int id)
{
vtkDebugMacro(<< "Execute: inData = " << inData
<< ", outData = " << outData);
// this filter expects that input is the same type as output.
if (inData->GetScalarType() != outData->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, "
<< inData->GetScalarType()
<< ", must match out ScalarType "
<< outData->GetScalarType());
return;
}
// input must have at least two components
if (inData->GetNumberOfScalarComponents() < 2)
{
vtkErrorMacro(<< "Execute: input does not have at least two components");
return;
}
switch (inData->GetScalarType())
{
vtkTemplateMacro(
vtkImageEuclideanToPolarExecute( this,
inData, outData, outExt, id,
static_cast<VTK_TT *>(0)));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
void vtkImageEuclideanToPolar::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Maximum Angle: " << this->ThetaMaximum << "\n";
}
|