1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageGaussianSmooth.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageGaussianSmooth.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkStandardNewMacro(vtkImageGaussianSmooth);
//----------------------------------------------------------------------------
vtkImageGaussianSmooth::vtkImageGaussianSmooth()
{
this->Dimensionality = 3; // note: this overrides Standard deviation.
this->StandardDeviations[0] = 2.0;
this->StandardDeviations[1] = 2.0;
this->StandardDeviations[2] = 2.0;
this->RadiusFactors[0] = 1.5;
this->RadiusFactors[1] = 1.5;
this->RadiusFactors[2] = 1.5;
}
//----------------------------------------------------------------------------
vtkImageGaussianSmooth::~vtkImageGaussianSmooth()
{
}
//----------------------------------------------------------------------------
void vtkImageGaussianSmooth::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
// int idx;
//os << indent << "BoundaryRescale: " << this->BoundaryRescale << "\n";
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
os << indent << "RadiusFactors: ( "
<< this->RadiusFactors[0] << ", "
<< this->RadiusFactors[1] << ", "
<< this->RadiusFactors[2] << " )\n";
os << indent << "StandardDeviations: ( "
<< this->StandardDeviations[0] << ", "
<< this->StandardDeviations[1] << ", "
<< this->StandardDeviations[2] << " )\n";
}
//----------------------------------------------------------------------------
void vtkImageGaussianSmooth::ComputeKernel(double *kernel, int min, int max,
double std)
{
int x;
double sum;
// handle special case
if (std == 0.0)
{
kernel[0] = 1.0;
return;
}
// fill in kernel
sum = 0.0;
for (x = min; x <= max; ++x)
{
sum += kernel[x-min] =
exp(- (static_cast<double>(x*x)) / (std * std * 2.0));
}
// normalize
for (x = min; x <= max; ++x)
{
kernel[x-min] /= sum;
}
}
//----------------------------------------------------------------------------
int vtkImageGaussianSmooth::RequestUpdateExtent (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int wholeExtent[6], inExt[6];
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inExt);
// Expand filtered axes
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
this->InternalRequestUpdateExtent(inExt, wholeExtent);
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inExt, 6);
return 1;
}
//----------------------------------------------------------------------------
void vtkImageGaussianSmooth::InternalRequestUpdateExtent(int *inExt,
int *wholeExtent)
{
int idx, radius;
// Expand filtered axes
for (idx = 0; idx < this->Dimensionality; ++idx)
{
radius = static_cast<int>(this->StandardDeviations[idx]
* this->RadiusFactors[idx]);
inExt[idx*2] -= radius;
if (inExt[idx*2] < wholeExtent[idx*2])
{
inExt[idx*2] = wholeExtent[idx*2];
}
inExt[idx*2+1] += radius;
if (inExt[idx*2+1] > wholeExtent[idx*2+1])
{
inExt[idx*2+1] = wholeExtent[idx*2+1];
}
}
}
//----------------------------------------------------------------------------
// For a given position along the convolution axis, this method loops over
// all other axes, and performs the convolution. Boundary conditions handled
// previously.
template <class T>
void
vtkImageGaussianSmoothExecute(vtkImageGaussianSmooth *self, int axis,
double *kernel, int kernelSize,
vtkImageData *inData, T *inPtrC,
vtkImageData *outData, int outExt[6],
T *outPtrC, int *pcycle, int target,
int *pcount, int total)
{
int maxC, max0 = 0, max1 = 0;
int idxC, idx0, idx1, idxK;
vtkIdType *inIncs, *outIncs;
vtkIdType inInc0 = 0, inInc1 = 0, inIncK, outInc0 = 0, outInc1 = 0;
T *outPtr1, *outPtr0;
T *inPtr1, *inPtr0, *inPtrK;
double *ptrK, sum;
// I am counting on the fact that tight loops (component on outside)
// is more important than cache misses from shuffled access.
// Do the correct shuffling of the axes (increments, extents)
inIncs = inData->GetIncrements();
outIncs = outData->GetIncrements();
inIncK = inIncs[axis];
maxC = outData->GetNumberOfScalarComponents();
switch (axis)
{
case 0:
inInc0 = inIncs[1]; inInc1 = inIncs[2];
outInc0 = outIncs[1]; outInc1 = outIncs[2];
max0 = outExt[3] - outExt[2] + 1; max1 = outExt[5] - outExt[4] + 1;
break;
case 1:
inInc0 = inIncs[0]; inInc1 = inIncs[2];
outInc0 = outIncs[0]; outInc1 = outIncs[2];
max0 = outExt[1] - outExt[0] + 1; max1 = outExt[5] - outExt[4] + 1;
break;
case 2:
inInc0 = inIncs[0]; inInc1 = inIncs[1];
outInc0 = outIncs[0]; outInc1 = outIncs[1];
max0 = outExt[1] - outExt[0] + 1; max1 = outExt[3] - outExt[2] + 1;
break;
}
for (idxC = 0; idxC < maxC; ++idxC)
{
inPtr1 = inPtrC;
outPtr1 = outPtrC;
for (idx1 = 0; !self->AbortExecute && idx1 < max1; ++idx1)
{
inPtr0 = inPtr1;
outPtr0 = outPtr1;
for (idx0 = 0; idx0 < max0; ++idx0)
{
inPtrK = inPtr0;
ptrK = kernel;
sum = 0.0;
// too bad this short loop has to be the inner most loop
for (idxK = 0; idxK < kernelSize; ++idxK)
{
sum += *ptrK * static_cast<double>(*inPtrK);
++ptrK;
inPtrK += inIncK;
}
*outPtr0 = static_cast<T>(sum);
inPtr0 += inInc0;
outPtr0 += outInc0;
}
inPtr1 += inInc1;
outPtr1 += outInc1;
// we finished a row ... do we update ???
if (total)
{ // yes this is the main thread
*pcycle += max0;
if (*pcycle > target)
{ // yes
*pcycle -= target;
*pcount += target;
self->UpdateProgress(static_cast<double>(*pcount) /
static_cast<double>(total));
//fprintf(stderr, "count: %d, total: %d, progress: %f\n",
//*pcount, total, (double)(*pcount) / (double)total);
}
}
}
++inPtrC;
++outPtrC;
}
}
//----------------------------------------------------------------------------
template <class T>
size_t vtkImageGaussianSmoothGetTypeSize(T*)
{
return sizeof(T);
}
//----------------------------------------------------------------------------
// This method convolves over one axis. It loops over the convolved axis,
// and handles boundary conditions.
void vtkImageGaussianSmooth::ExecuteAxis(int axis,
vtkImageData *inData, int inExt[6],
vtkImageData *outData, int outExt[6],
int *pcycle, int target,
int *pcount, int total,
vtkInformation *inInfo)
{
int idxA, max;
int wholeExtent[6], wholeMax, wholeMin;
double *kernel;
// previousClip and currentClip rembers that the previous was not clipped
// keeps from recomputing kernels for center pixels.
int kernelSize = 0;
int kernelLeftClip, kernelRightClip;
int previousClipped, currentClipped;
int radius, size;
void *inPtr;
void *outPtr;
int coords[3];
vtkIdType *outIncs, outIncA;
// Get the correct starting pointer of the output
outPtr = outData->GetScalarPointerForExtent(outExt);
outIncs = outData->GetIncrements();
outIncA = outIncs[axis];
// trick to account for the scalar type of the output(used to be only float)
switch (outData->GetScalarType())
{
vtkTemplateMacro(
outIncA *= vtkImageGaussianSmoothGetTypeSize(static_cast<VTK_TT*>(0))
);
default:
vtkErrorMacro("Unknown scalar type");
return;
}
// Determine default starting position of input
coords[0] = inExt[0];
coords[1] = inExt[2];
coords[2] = inExt[4];
// get whole extent for boundary checking ...
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
wholeMin = wholeExtent[axis*2];
wholeMax = wholeExtent[axis*2+1];
// allocate memory for the kernel
radius = static_cast<int>(this->StandardDeviations[axis]
* this->RadiusFactors[axis]);
size = 2*radius + 1;
kernel = new double[size];
// loop over the convolution axis
previousClipped = currentClipped = 1;
max = outExt[axis*2+1];
for (idxA = outExt[axis*2]; idxA <= max; ++idxA)
{
// left boundary condition
coords[axis] = idxA - radius;
kernelLeftClip = wholeMin - coords[axis];
if (kernelLeftClip > 0)
{ // front of kernel is cut off ("kernelStart" samples)
coords[axis] += kernelLeftClip;
}
else
{
kernelLeftClip = 0;
}
// Right boundary condition
kernelRightClip = (idxA + radius) - wholeMax;
if (kernelRightClip < 0)
{
kernelRightClip = 0;
}
// We can only use previous kernel if it is not clipped and new
// kernel is also not clipped.
currentClipped = kernelLeftClip + kernelRightClip;
if (currentClipped || previousClipped)
{
this->ComputeKernel(kernel, -radius+kernelLeftClip,
radius-kernelRightClip,
static_cast<double>(this->StandardDeviations[axis]));
kernelSize = size - kernelLeftClip - kernelRightClip;
}
previousClipped = currentClipped;
/* now do the convolution on the rest of the axes */
inPtr = inData->GetScalarPointer(coords);
switch (inData->GetScalarType())
{
vtkTemplateMacro(
vtkImageGaussianSmoothExecute(this, axis, kernel, kernelSize,
inData, static_cast<VTK_TT*>(inPtr),
outData, outExt,
static_cast<VTK_TT*>(outPtr),
pcycle, target, pcount, total)
);
default:
vtkErrorMacro("Unknown scalar type");
return;
}
outPtr = static_cast<void *>(
static_cast<unsigned char *>(outPtr) + outIncA);
}
// get rid of temporary kernel
delete [] kernel;
}
//----------------------------------------------------------------------------
// This method decomposes the gaussian and smooths along each axis.
void vtkImageGaussianSmooth::ThreadedRequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector,
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
int inExt[6];
int target, count, total, cycle;
// for feed back, determine line target to get 50 progress update
// update is called every target lines. Progress is computed from
// the number of pixels processed so far.
count = 0; target = 0; total = 0; cycle = 0;
if (id == 0)
{
// determine the number of pixels.
total = this->Dimensionality * (outExt[1] - outExt[0] + 1)
* (outExt[3] - outExt[2] + 1) * (outExt[5] - outExt[4] + 1)
* inData[0][0]->GetNumberOfScalarComponents();
// pixels per update (50 updates)
target = total / 50;
}
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro("Execute: input ScalarType, "
<< inData[0][0]->GetScalarType()
<< ", must match out ScalarType "
<< outData[0]->GetScalarType());
return;
}
// Decompose
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
int wholeExt[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExt);
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inExt);
this->InternalRequestUpdateExtent(inExt, wholeExt);
switch (this->Dimensionality)
{
case 1:
this->ExecuteAxis(0, inData[0][0], inExt, outData[0], outExt,
&cycle, target, &count, total, inInfo);
break;
case 2:
int tempExt[6];
vtkImageData *tempData;
// compute intermediate extent
tempExt[0] = inExt[0]; tempExt[1] = inExt[1];
tempExt[2] = outExt[2]; tempExt[3] = outExt[3];
tempExt[4] = inExt[4]; tempExt[5] = inExt[5];
// create a temp data for intermediate results
tempData = vtkImageData::New();
tempData->SetExtent(tempExt);
tempData->AllocateScalars(inData[0][0]->GetScalarType(),
inData[0][0]->GetNumberOfScalarComponents());
this->ExecuteAxis(1, inData[0][0], inExt, tempData, tempExt,
&cycle, target, &count, total, inInfo);
this->ExecuteAxis(0, tempData, tempExt, outData[0], outExt,
&cycle, target, &count, total, inInfo);
// release temporary data
tempData->Delete();
break;
case 3:
// we do z first because it is most likely smallest
int temp0Ext[6], temp1Ext[6];
vtkImageData *temp0Data, *temp1Data;
// compute intermediate extents
temp0Ext[0] = inExt[0]; temp0Ext[1] = inExt[1];
temp0Ext[2] = inExt[2]; temp0Ext[3] = inExt[3];
temp0Ext[4] = outExt[4]; temp0Ext[5] = outExt[5];
temp1Ext[0] = inExt[0]; temp1Ext[1] = inExt[1];
temp1Ext[2] = outExt[2]; temp1Ext[3] = outExt[3];
temp1Ext[4] = outExt[4]; temp1Ext[5] = outExt[5];
// create a temp data for intermediate results
temp0Data = vtkImageData::New();
temp0Data->SetExtent(temp0Ext);
temp0Data->AllocateScalars(inData[0][0]->GetScalarType(),
inData[0][0]->GetNumberOfScalarComponents());
temp1Data = vtkImageData::New();
temp1Data->SetExtent(temp1Ext);
temp1Data->AllocateScalars(inData[0][0]->GetScalarType(),
inData[0][0]->GetNumberOfScalarComponents());
this->ExecuteAxis(2, inData[0][0], inExt, temp0Data, temp0Ext,
&cycle, target, &count, total, inInfo);
this->ExecuteAxis(1, temp0Data, temp0Ext, temp1Data, temp1Ext,
&cycle, target, &count, total, inInfo);
temp0Data->Delete();
this->ExecuteAxis(0, temp1Data, temp1Ext, outData[0], outExt,
&cycle, target, &count, total, inInfo);
temp1Data->Delete();
break;
}
}
|