File: vtkImageGradientMagnitude.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (285 lines) | stat: -rw-r--r-- 9,034 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImageGradientMagnitude.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkImageGradientMagnitude.h"

#include "vtkDataArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkPointData.h"

#include <math.h>

vtkStandardNewMacro(vtkImageGradientMagnitude);

//----------------------------------------------------------------------------
// Construct an instance of vtkImageGradientMagnitude fitler.
vtkImageGradientMagnitude::vtkImageGradientMagnitude()
{
  this->SetNumberOfInputPorts(1);
  this->SetNumberOfOutputPorts(1);
  this->Dimensionality = 2;
  this->HandleBoundaries = 1;
}


//----------------------------------------------------------------------------
void vtkImageGradientMagnitude::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "HandleBoundaries: " << this->HandleBoundaries << "\n";
  os << indent << "Dimensionality: " << this->Dimensionality << "\n";
}

//----------------------------------------------------------------------------
// This method is passed a region that holds the image extent of this filters
// input, and changes the region to hold the image extent of this filters
// output.
int vtkImageGradientMagnitude::RequestInformation (
  vtkInformation* vtkNotUsed(request),
  vtkInformationVector** inputVector,
  vtkInformationVector* outputVector)
{
  int extent[6];
  int idx;

  // get the info objects
  vtkInformation* outInfo = outputVector->GetInformationObject(0);
  vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);

  // invalid setting, it has not been set, so default to whole Extent
  inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
              extent);

  if ( ! this->HandleBoundaries)
    {
    // shrink output image extent.
    for (idx = 0; idx < this->Dimensionality; ++idx)
      {
      extent[idx*2] += 1;
      extent[idx*2 + 1] -= 1;
      }
    }

  outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
               extent, 6);

  return 1;
}


//----------------------------------------------------------------------------
// This method computes the input extent necessary to generate the output.
int vtkImageGradientMagnitude::RequestUpdateExtent (
  vtkInformation* vtkNotUsed(request),
  vtkInformationVector** inputVector,
  vtkInformationVector* outputVector)
{
  int wholeExtent[6];
  int idx;

  // get the info objects
  vtkInformation* outInfo = outputVector->GetInformationObject(0);
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);

  // invalid setting, it has not been set, so default to whole Extent
  inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
              wholeExtent);
  int inUExt[6];
  outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);

  // grow input whole extent.
  for (idx = 0; idx < this->Dimensionality; ++idx)
    {
    inUExt[idx*2] -= 1;
    inUExt[idx*2+1] += 1;
    if (this->HandleBoundaries)
      {
      // we must clip extent with whole extent is we hanlde boundaries.
      if (inUExt[idx*2] < wholeExtent[idx*2])
        {
        inUExt[idx*2] = wholeExtent[idx*2];
        }
      if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
        {
        inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
        }
      }
    }
  inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);

  return 1;
}

//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageGradientMagnitudeExecute(vtkImageGradientMagnitude *self,
                                      vtkImageData *inData, T *inPtr,
                                      vtkImageData *outData, T *outPtr,
                                      int outExt[6], int id)
{
  int idxC, idxX, idxY, idxZ;
  int maxC, maxX, maxY, maxZ;
  vtkIdType inIncX, inIncY, inIncZ;
  vtkIdType outIncX, outIncY, outIncZ;
  unsigned long count = 0;
  unsigned long target;
  int axesNum;
  int *wholeExtent;
  vtkIdType *inIncs;
  double r[3], d, sum;
  int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
  int *inExt = inData->GetExtent();

  // find the region to loop over
  maxC = outData->GetNumberOfScalarComponents();
  maxX = outExt[1] - outExt[0];
  maxY = outExt[3] - outExt[2];
  maxZ = outExt[5] - outExt[4];
  target = static_cast<unsigned long>((maxZ+1)*(maxY+1)/50.0);
  target++;

  // Get the dimensionality of the gradient.
  axesNum = self->GetDimensionality();

  // Get increments to march through data
  inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
  outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);

  // The data spacing is important for computing the gradient.
  inData->GetSpacing(r);
  r[0] = 0.5 / r[0];
  r[1] = 0.5 / r[1];
  r[2] = 0.5 / r[2];

  // get some other info we need
  inIncs = inData->GetIncrements();
  wholeExtent = inData->GetExtent();

  // Move the starting pointer to the correct location.
  inPtr += (outExt[0]-inExt[0])*inIncs[0] +
           (outExt[2]-inExt[2])*inIncs[1] +
           (outExt[4]-inExt[4])*inIncs[2];

  // Loop through output pixels
  for (idxZ = 0; idxZ <= maxZ; idxZ++)
    {
    useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
    useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
    for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
      {
      if (!id)
        {
        if (!(count%target))
          {
          self->UpdateProgress(count/(50.0*target));
          }
        count++;
        }
      useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
      useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
      for (idxX = 0; idxX <= maxX; idxX++)
        {
        useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
        useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
        for (idxC = 0; idxC < maxC; idxC++)
          {
          // do X axis
          d = static_cast<double>(inPtr[useXMin]);
          d -= static_cast<double>(inPtr[useXMax]);
          d *= r[0]; // multiply by the data spacing
          sum = d * d;
          // do y axis
          d = static_cast<double>(inPtr[useYMin]);
          d -= static_cast<double>(inPtr[useYMax]);
          d *= r[1]; // multiply by the data spacing
          sum += (d * d);
          if (axesNum == 3)
            {
            // do z axis
            d = static_cast<double>(inPtr[useZMin]);
            d -= static_cast<double>(inPtr[useZMax]);
            d *= r[2]; // multiply by the data spacing
            sum += (d * d);
            }
          *outPtr = static_cast<T>(sqrt(sum));
          outPtr++;
          inPtr++;
          }
        }
      outPtr += outIncY;
      inPtr += inIncY;
      }
    outPtr += outIncZ;
    inPtr += inIncZ;
    }
}


//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input data type.  The output data
// must match input type.  This method does handle boundary conditions.
void vtkImageGradientMagnitude::ThreadedExecute (vtkImageData *inData,
                                                 vtkImageData *outData,
                                                 int outExt[6], int id)
{
  void *inPtr;
  void *outPtr = outData->GetScalarPointerForExtent(outExt);
  inPtr = inData->GetScalarPointer();

  // this filter expects that input is the same type as output.
  if (inData->GetScalarType() != outData->GetScalarType())
    {
    vtkErrorMacro(<< "Execute: input data type, "
                  << inData->GetScalarType()
                  << ", must match out ScalarType "
                  << outData->GetScalarType());
    return;
    }

  switch (inData->GetScalarType())
    {
    vtkTemplateMacro(
      vtkImageGradientMagnitudeExecute(this,
                                       inData, static_cast<VTK_TT *>(inPtr),
                                       outData,
                                       static_cast<VTK_TT *>(outPtr), outExt,
                                       id));
    default:
      vtkErrorMacro(<< "Execute: Unknown ScalarType");
      return;
    }
}