1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageLaplacian.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageLaplacian.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkStandardNewMacro(vtkImageLaplacian);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageLaplacian fitler.
vtkImageLaplacian::vtkImageLaplacian()
{
this->Dimensionality = 2;
}
//----------------------------------------------------------------------------
void vtkImageLaplacian::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Dimensionality: " << this->Dimensionality;
}
//----------------------------------------------------------------------------
// Just clip the request. The subclass may need to overwrite this method.
int vtkImageLaplacian::RequestUpdateExtent (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int idx;
int wholeExtent[6], inUExt[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);
// update and Clip
for (idx = 0; idx < 3; ++idx)
{
--inUExt[idx*2];
++inUExt[idx*2+1];
if (inUExt[idx*2] < wholeExtent[idx*2])
{
inUExt[idx*2] = wholeExtent[idx*2];
}
if (inUExt[idx*2] > wholeExtent[idx*2 + 1])
{
inUExt[idx*2] = wholeExtent[idx*2 + 1];
}
if (inUExt[idx*2+1] < wholeExtent[idx*2])
{
inUExt[idx*2+1] = wholeExtent[idx*2];
}
if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
{
inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
}
}
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);
return 1;
}
//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageLaplacianExecute(vtkImageLaplacian *self,
vtkImageData *inData, T *inPtr,
vtkImageData *outData, T *outPtr,
int outExt[6], int id)
{
int idxC, idxX, idxY, idxZ;
int maxC, maxX, maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
unsigned long count = 0;
unsigned long target;
int axesNum;
int *wholeExtent;
vtkIdType *inIncs;
double r[3], d, sum;
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
// find the region to loop over
maxC = inData->GetNumberOfScalarComponents();
maxX = outExt[1] - outExt[0];
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = static_cast<unsigned long>((maxZ+1)*(maxY+1)/50.0);
target++;
// Get the dimensionality of the gradient.
axesNum = self->GetDimensionality();
// Get increments to march through data
inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// The data spacing is important for computing the Laplacian.
// Divided by dx twice (second derivative).
inData->GetSpacing(r);
r[0] = 1.0 / (r[0] * r[0]);
r[1] = 1.0 / (r[1] * r[1]);
r[2] = 1.0 / (r[2] * r[2]);
// get some other info we need
inIncs = inData->GetIncrements();
wholeExtent = inData->GetExtent();
// Loop through output pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
for (idxX = 0; idxX <= maxX; idxX++)
{
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
for (idxC = 0; idxC < maxC; idxC++)
{
// do X axis
d = -2.0*(*inPtr);
d += static_cast<double>(inPtr[useXMin]);
d += static_cast<double>(inPtr[useXMax]);
sum = d * r[0];
// do y axis
d = -2.0*(*inPtr);
d += static_cast<double>(inPtr[useYMin]);
d += static_cast<double>(inPtr[useYMax]);
sum = sum + d * r[1];
if (axesNum == 3)
{
// do z axis
d = -2.0*(*inPtr);
d += static_cast<double>(inPtr[useZMin]);
d += static_cast<double>(inPtr[useZMax]);
sum = sum + d * r[2];
}
*outPtr = static_cast<T>(sum);
inPtr++;
outPtr++;
}
}
outPtr += outIncY;
inPtr += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input data type. The output data
// must match input type. This method does handle boundary conditions.
void vtkImageLaplacian::ThreadedRequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **vtkNotUsed(inputVector),
vtkInformationVector *vtkNotUsed(outputVector),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
void *inPtr = inData[0][0]->GetScalarPointerForExtent(outExt);
void *outPtr = outData[0]->GetScalarPointerForExtent(outExt);
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() !=
outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, "
<< inData[0][0]->GetScalarType() << ", must match out ScalarType "
<< outData[0]->GetScalarType());
return;
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageLaplacianExecute( this, inData[0][0],
static_cast<VTK_TT *>(inPtr), outData[0],
static_cast<VTK_TT *>(outPtr),
outExt, id));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
|