1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkCollapseGraph.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*----------------------------------------------------------------------------
Copyright (c) Sandia Corporation
See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
----------------------------------------------------------------------------*/
#include "vtkCollapseGraph.h"
#include "vtkConvertSelection.h"
#include "vtkDataSetAttributes.h"
#include "vtkEdgeListIterator.h"
#include "vtkIdTypeArray.h"
#include "vtkInEdgeIterator.h"
#include "vtkInformation.h"
#include "vtkMutableDirectedGraph.h"
#include "vtkMutableUndirectedGraph.h"
#include "vtkObjectFactory.h"
#include "vtkSelection.h"
#include "vtkSmartPointer.h"
//#include <iterator>
#include <vector>
/// Defines storage for a collection of edges
typedef std::vector<vtkEdgeType> EdgeListT;
///////////////////////////////////////////////////////////////////////////////////
// BuildGraph
template<typename GraphT>
static void BuildGraph(vtkGraph* input_graph, const std::vector<vtkIdType>& vertex_map, const EdgeListT& edge_list, vtkGraph* destination_graph)
{
vtkSmartPointer<GraphT> output_graph = vtkSmartPointer<GraphT>::New();
output_graph->GetFieldData()->ShallowCopy(input_graph->GetFieldData());
vtkDataSetAttributes* const input_vertex_data = input_graph->GetVertexData();
vtkDataSetAttributes* const output_vertex_data = output_graph->GetVertexData();
output_vertex_data->CopyAllocate(input_vertex_data);
for(std::vector<vtkIdType>::size_type i = 0; i != vertex_map.size(); ++i)
{
if(vertex_map[i] == -1)
continue;
output_graph->AddVertex();
output_vertex_data->CopyData(input_vertex_data, i, vertex_map[i]);
}
vtkDataSetAttributes* const input_edge_data = input_graph->GetEdgeData();
vtkDataSetAttributes* const output_edge_data = output_graph->GetEdgeData();
output_edge_data->CopyAllocate(input_edge_data);
for(EdgeListT::const_iterator input_edge = edge_list.begin(); input_edge != edge_list.end(); ++input_edge)
{
vtkEdgeType output_edge = output_graph->AddEdge(vertex_map[input_edge->Source], vertex_map[input_edge->Target]);
output_edge_data->CopyData(input_edge_data, input_edge->Id, output_edge.Id);
}
destination_graph->ShallowCopy(output_graph);
}
///////////////////////////////////////////////////////////////////////////////////
// vtkCollapseGraph
vtkStandardNewMacro(vtkCollapseGraph);
vtkCollapseGraph::vtkCollapseGraph()
{
this->SetNumberOfInputPorts(2);
}
vtkCollapseGraph::~vtkCollapseGraph()
{
}
void vtkCollapseGraph::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
}
void vtkCollapseGraph::SetGraphConnection(vtkAlgorithmOutput* input)
{
this->SetInputConnection(0, input);
}
void vtkCollapseGraph::SetSelectionConnection(vtkAlgorithmOutput* input)
{
this->SetInputConnection(1, input);
}
int vtkCollapseGraph::FillInputPortInformation(int port, vtkInformation* info)
{
if(port == 0)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkGraph");
return 1;
}
else if(port == 1)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkSelection");
return 1;
}
return 0;
}
int vtkCollapseGraph::RequestData(
vtkInformation* vtkNotUsed(request),
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
// Ensure we have valid inputs ...
vtkGraph* const input_graph = vtkGraph::GetData(inputVector[0]);
vtkGraph* const output_graph = vtkGraph::GetData(outputVector);
vtkSmartPointer<vtkIdTypeArray> input_indices =
vtkSmartPointer<vtkIdTypeArray>::New();
vtkConvertSelection::GetSelectedVertices(
vtkSelection::GetData(inputVector[1]),
input_graph,
input_indices);
// Convert the input selection into an "expanding" array that contains "true" for each
// vertex that is expanding (i.e. its neighbors are collapsing into it)
std::vector<bool> expanding(input_graph->GetNumberOfVertices(), false);
for(vtkIdType i = 0; i != input_indices->GetNumberOfTuples(); ++i)
{
expanding[input_indices->GetValue(i)] = true;
}
// Create a mapping from each child vertex to its expanding neighbor (if any)
std::vector<vtkIdType> parent(input_graph->GetNumberOfVertices());
vtkSmartPointer<vtkInEdgeIterator> in_edge_iterator = vtkSmartPointer<vtkInEdgeIterator>::New();
for(vtkIdType vertex = 0; vertex != input_graph->GetNumberOfVertices(); ++vertex)
{
// By default, vertices map to themselves, i.e: they aren't collapsed
parent[vertex] = vertex;
if(expanding[vertex])
continue;
input_graph->GetInEdges(vertex, in_edge_iterator);
while(in_edge_iterator->HasNext())
{
const vtkIdType adjacent_vertex = in_edge_iterator->Next().Source;
if(expanding[adjacent_vertex])
{
parent[vertex] = adjacent_vertex;
break;
}
}
}
// Create a mapping from vertex IDs in the original graph to vertex IDs in the output graph
std::vector<vtkIdType> vertex_map(input_graph->GetNumberOfVertices(), -1);
for(vtkIdType old_vertex = 0, new_vertex = 0; old_vertex != input_graph->GetNumberOfVertices(); ++old_vertex)
{
if(parent[old_vertex] != old_vertex)
continue;
vertex_map[old_vertex] = new_vertex++;
}
// Create a new edge list, mapping each edge from children to parents, eliminating duplicates as we go
EdgeListT edge_list;
vtkSmartPointer<vtkEdgeListIterator> edge_iterator = vtkSmartPointer<vtkEdgeListIterator>::New();
input_graph->GetEdges(edge_iterator);
while(edge_iterator->HasNext())
{
vtkEdgeType edge = edge_iterator->Next();
edge.Source = parent[edge.Source];
edge.Target = parent[edge.Target];
if(edge.Source == edge.Target)
continue;
edge_list.push_back(edge);
}
// Build the new output graph, based on the graph type ...
if(vtkDirectedGraph::SafeDownCast(input_graph))
{
BuildGraph<vtkMutableDirectedGraph>(input_graph, vertex_map, edge_list, output_graph);
}
else if(vtkUndirectedGraph::SafeDownCast(input_graph))
{
BuildGraph<vtkMutableUndirectedGraph>(input_graph, vertex_map, edge_list, output_graph);
}
else
{
vtkErrorMacro(<< "Unknown input graph type");
return 0;
}
return 1;
}
|