1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkCommunity2DLayoutStrategy.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
#include "vtkCommunity2DLayoutStrategy.h"
#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCommand.h"
#include "vtkDataArray.h"
#include "vtkDoubleArray.h"
#include "vtkEdgeListIterator.h"
#include "vtkFastSplatter.h"
#include "vtkFloatArray.h"
#include "vtkGraph.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkIdTypeArray.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkSmartPointer.h"
#include "vtkTree.h"
vtkStandardNewMacro(vtkCommunity2DLayoutStrategy);
#ifndef MIN
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#endif
// Cool-down function.
static inline float CoolDown(float t, float r)
{
return t-(t/r);
}
// ----------------------------------------------------------------------
vtkCommunity2DLayoutStrategy::vtkCommunity2DLayoutStrategy()
{
// Create internal vtk classes
this->DensityGrid = vtkSmartPointer<vtkFastSplatter>::New();
this->SplatImage = vtkSmartPointer<vtkImageData>::New();
this->RepulsionArray = vtkSmartPointer<vtkFloatArray>::New();
this->AttractionArray = vtkSmartPointer<vtkFloatArray>::New();
this->RandomSeed = 123;
this->MaxNumberOfIterations = 200;
this->IterationsPerLayout = 200;
this->InitialTemperature = 5;
this->CoolDownRate = 50.0;
this->LayoutComplete = 0;
this->EdgeWeightField = 0;
this->SetEdgeWeightField("weight");
this->RestDistance = 0;
this->EdgeArray = 0;
this->CommunityArrayName = 0;
this->SetCommunityArrayName("community");
this->CommunityStrength = 1.0;
}
// ----------------------------------------------------------------------
vtkCommunity2DLayoutStrategy::~vtkCommunity2DLayoutStrategy()
{
this->SetEdgeWeightField(0);
this->SetCommunityArrayName(0);
delete [] this->EdgeArray;
}
// Helper functions
void vtkCommunity2DLayoutStrategy::GenerateCircularSplat(vtkImageData *splat, int x, int y)
{
splat->SetDimensions(x, y, 1);
splat->AllocateScalars(VTK_FLOAT, 1);
const int *dimensions = splat->GetDimensions();
// Circular splat: 1 in the middle and 0 at the corners and sides
for (int row = 0; row < dimensions[1]; ++row)
{
for (int col = 0; col < dimensions[0]; ++col)
{
float splatValue;
// coordinates will range from -1 to 1
float xCoord = (col - dimensions[0]/2.0) / (dimensions[0]/2.0);
float yCoord = (row - dimensions[1]/2.0) / (dimensions[1]/2.0);
float radius = sqrt(xCoord*xCoord + yCoord*yCoord);
if ((1 - radius) > 0)
{
splatValue = 1-radius;
}
else
{
splatValue = 0;
}
// Set value
splat->SetScalarComponentFromFloat(col,row,0,0,splatValue);
}
}
}
void vtkCommunity2DLayoutStrategy::GenerateGaussianSplat(vtkImageData *splat, int x, int y)
{
splat->SetDimensions(x, y, 1);
splat->AllocateScalars(VTK_FLOAT, 1);
const int *dimensions = splat->GetDimensions();
// Gaussian splat
float falloff = 10; // fast falloff
float e= 2.71828182845904;
for (int row = 0; row < dimensions[1]; ++row)
{
for (int col = 0; col < dimensions[0]; ++col)
{
float splatValue;
// coordinates will range from -1 to 1
float xCoord = (col - dimensions[0]/2.0) / (dimensions[0]/2.0);
float yCoord = (row - dimensions[1]/2.0) / (dimensions[1]/2.0);
splatValue = pow(e,-((xCoord*xCoord + yCoord*yCoord) * falloff));
// Set value
splat->SetScalarComponentFromFloat(col,row,0,0,splatValue);
}
}
}
// ----------------------------------------------------------------------
// Set the graph that will be laid out
void vtkCommunity2DLayoutStrategy::Initialize()
{
vtkMath::RandomSeed(this->RandomSeed);
// Set up some quick access variables
vtkPoints* pts = this->Graph->GetPoints();
vtkIdType numVertices = this->Graph->GetNumberOfVertices();
vtkIdType numEdges = this->Graph->GetNumberOfEdges();
// Make sure output point type is float
if (pts->GetData()->GetDataType() != VTK_FLOAT)
{
vtkErrorMacro("Layout strategy expects to have points of type float");
this->LayoutComplete = 1;
return;
}
// Get a quick pointer to the point data
vtkFloatArray *array = vtkFloatArray::SafeDownCast(pts->GetData());
float *rawPointData = array->GetPointer(0);
// Avoid divide by zero
float div = 1;
if (numVertices > 0)
{
div = static_cast<float>(numVertices);
}
// The optimal distance between vertices.
if (this->RestDistance == 0)
{
this->RestDistance = sqrt(1.0 / div);
}
// Set up array to store repulsion values
this->RepulsionArray->SetNumberOfComponents(3);
this->RepulsionArray->SetNumberOfTuples(numVertices);
for (vtkIdType i=0; i<numVertices*3; ++i)
{
this->RepulsionArray->SetValue(i, 0);
}
// Set up array to store attraction values
this->AttractionArray->SetNumberOfComponents(3);
this->AttractionArray->SetNumberOfTuples(numVertices);
for (vtkIdType i=0; i<numVertices*3; ++i)
{
this->AttractionArray->SetValue(i, 0);
}
// Put the edge data into compact, fast access edge data structure
delete [] this->EdgeArray;
this->EdgeArray = new vtkLayoutEdge[numEdges];
// Jitter x and y, skip z
for (vtkIdType i=0; i<numVertices*3; i+=3)
{
rawPointData[i] += this->RestDistance*(vtkMath::Random() - .5);
rawPointData[i+1] += this->RestDistance*(vtkMath::Random() - .5);
}
// Get the weight array
vtkDataArray* weightArray = NULL;
double weight, maxWeight = 1;
if (this->WeightEdges && this->EdgeWeightField != NULL)
{
weightArray = vtkDataArray::SafeDownCast(this->Graph->GetEdgeData()->GetAbstractArray(this->EdgeWeightField));
if (weightArray != NULL)
{
for (vtkIdType w = 0; w < weightArray->GetNumberOfTuples(); w++)
{
weight = weightArray->GetTuple1(w);
if (weight > maxWeight)
{
maxWeight = weight;
}
}
}
}
// Load up the edge data structures
vtkSmartPointer<vtkEdgeListIterator> edges =
vtkSmartPointer<vtkEdgeListIterator>::New();
this->Graph->GetEdges(edges);
while (edges->HasNext())
{
vtkEdgeType e = edges->Next();
this->EdgeArray[e.Id].from = e.Source;
this->EdgeArray[e.Id].to = e.Target;
if (weightArray != NULL)
{
weight = weightArray->GetTuple1(e.Id);
this->EdgeArray[e.Id].weight = weight / maxWeight;
}
else
{
this->EdgeArray[e.Id].weight = 1.0;
}
}
// Set some vars
this->TotalIterations = 0;
this->LayoutComplete = 0;
this->Temp = this->InitialTemperature;
// Set up the image splatter
this->GenerateGaussianSplat(this->SplatImage, 41, 41);
this->DensityGrid->SetInputData(1, this->SplatImage);
this->DensityGrid->SetOutputDimensions(100, 100, 1);
}
// ----------------------------------------------------------------------
// Simple graph layout method
void vtkCommunity2DLayoutStrategy::Layout()
{
// Do I have a graph to layout
if (this->Graph == NULL)
{
vtkErrorMacro("Graph Layout called with Graph==NULL, call SetGraph(g) first");
this->LayoutComplete = 1;
return;
}
// Set my graph as input into the density grid
this->DensityGrid->SetInputData(this->Graph);
// Set up some variables
vtkPoints* pts = this->Graph->GetPoints();
vtkIdType numVertices = this->Graph->GetNumberOfVertices();
vtkIdType numEdges = this->Graph->GetNumberOfEdges();
// Get a quick pointer to the community array
vtkDataArray *community =
this->Graph->GetVertexData()->GetArray(this->CommunityArrayName);
if (community == NULL)
{
vtkWarningMacro("vtkCommunity2DLayoutStrategy did not find a \"community\" array." <<
"\n so the layout will not pull communities together like it should");
}
// Get a quick pointer to the point data
vtkFloatArray *array = vtkFloatArray::SafeDownCast(pts->GetData());
float *rawPointData = array->GetPointer(0);
// This is the mega, uber, triple inner loop
// ye of weak hearts, tread no further!
float delta[]={0,0,0};
float disSquared;
float attractValue;
float epsilon = 1e-5;
vtkIdType rawSourceIndex=0;
vtkIdType rawTargetIndex=0;
for(int i = 0; i < this->IterationsPerLayout; ++i)
{
// Initialize the repulsion and attraction arrays
for (vtkIdType j=0; j<numVertices*3; ++j)
{
this->RepulsionArray->SetValue(j, 0);
}
// Set up array to store attraction values
for (vtkIdType j=0; j<numVertices*3; ++j)
{
this->AttractionArray->SetValue(j, 0);
}
// Compute bounds of graph going into the density grid
double bounds[6], paddedBounds[6];
this->Graph->ComputeBounds();
this->Graph->GetBounds(bounds);
// Give bounds a 10% padding
paddedBounds[0] = bounds[0] - (bounds[1]-bounds[0])*.1;
paddedBounds[1] = bounds[1] + (bounds[1]-bounds[0])*.1;
paddedBounds[2] = bounds[2] - (bounds[3]-bounds[2])*.1;
paddedBounds[3] = bounds[3] + (bounds[3]-bounds[2])*.1;
paddedBounds[4] = paddedBounds[5] = 0;
// Update the density grid
this->DensityGrid->SetModelBounds(paddedBounds);
this->DensityGrid->Update();
// Sanity check scalar type
if (this->DensityGrid->GetOutput()->GetScalarType() != VTK_FLOAT)
{
vtkErrorMacro("DensityGrid expected to be of type float");
return;
}
// Get the array handle
float *densityArray = static_cast<float*>
(this->DensityGrid->GetOutput()->GetScalarPointer());
// Get the dimensions of the density grid
int dims[3];
this->DensityGrid->GetOutputDimensions(dims);
// Calculate the repulsive forces
float *rawRepulseArray = this->RepulsionArray->GetPointer(0);
for(vtkIdType j=0; j<numVertices; ++j)
{
rawSourceIndex = j * 3;
// Compute indices into the density grid
int indexX = static_cast<int>(
(rawPointData[rawSourceIndex]-paddedBounds[0]) /
(paddedBounds[1]-paddedBounds[0]) * dims[0] + .5);
int indexY = static_cast<int>(
(rawPointData[rawSourceIndex+1]-paddedBounds[2]) /
(paddedBounds[3]-paddedBounds[2]) * dims[1] + .5);
// Look up the gradient density within the density grid
float x1 = densityArray[indexY * dims[0] + indexX-1];
float x2 = densityArray[indexY * dims[0] + indexX+1];
float y1 = densityArray[(indexY-1) * dims[0] + indexX];
float y2 = densityArray[(indexY+1) * dims[0] + indexX];
rawRepulseArray[rawSourceIndex] = (x1-x2); // Push away from higher
rawRepulseArray[rawSourceIndex+1] = (y1-y2);
}
// Calculate the attractive forces
float *rawAttractArray = this->AttractionArray->GetPointer(0);
for (vtkIdType j=0; j<numEdges; ++j)
{
rawSourceIndex = this->EdgeArray[j].from * 3;
rawTargetIndex = this->EdgeArray[j].to * 3;
// No need to attract points to themselves
if (rawSourceIndex == rawTargetIndex) continue;
delta[0] = rawPointData[rawSourceIndex] -
rawPointData[rawTargetIndex];
delta[1] = rawPointData[rawSourceIndex+1] -
rawPointData[rawTargetIndex+1];
disSquared = delta[0]*delta[0] + delta[1]*delta[1];
// Compute a bunch of parameters used below
int sourceIndex = this->EdgeArray[j].from;
int targetIndex = this->EdgeArray[j].to;
// Clustering: Get close to other nodes that are
// part of your community
float communityWeight = 1;
if (community)
{
int sourceComm = static_cast<int> (community->GetTuple1(sourceIndex));
int targetComm = static_cast<int> (community->GetTuple1(targetIndex));
// Often -1 is used for no/unspecified community
// if either node is marked as such then just skip
if ((sourceComm == -1) || (targetComm == -1))
{
continue;
}
// If the source and target are the same
// then increase the weight between them
if (sourceComm == targetComm)
{
communityWeight = 1 + 10 * this->CommunityStrength;
}
// If source and target are different
// then decrease the weight between them
else
{
communityWeight = 1.1 - this->CommunityStrength;
}
} // if community
// Perform weight adjustment
attractValue = this->EdgeArray[j].weight*communityWeight*disSquared -
this->RestDistance;
rawAttractArray[rawSourceIndex] -= delta[0] * attractValue;
rawAttractArray[rawSourceIndex+1] -= delta[1] * attractValue;
rawAttractArray[rawTargetIndex] += delta[0] * attractValue;
rawAttractArray[rawTargetIndex+1] += delta[1] * attractValue;
} // for each edge
// Okay now set new positions based on replusion
// and attraction 'forces'
for(vtkIdType j=0; j<numVertices; ++j)
{
rawSourceIndex = j * 3;
// Get forces for this node
float forceX = rawAttractArray[rawSourceIndex] + rawRepulseArray[rawSourceIndex];
float forceY = rawAttractArray[rawSourceIndex+1] + rawRepulseArray[rawSourceIndex+1];
// Forces can get extreme so limit them
// Note: This is psuedo-normalization of the
// force vector, just to save some cycles
// Avoid divide by zero
float forceDiv = fabs(forceX) + fabs(forceY) + epsilon;
float pNormalize = MIN(1, 1.0/forceDiv);
pNormalize *= this->Temp;
forceX *= pNormalize;
forceY *= pNormalize;
rawPointData[rawSourceIndex] += forceX;
rawPointData[rawSourceIndex+1] += forceY;
}
// The point coordinates have been modified
this->Graph->GetPoints()->Modified();
// Reduce temperature as layout approaches a better configuration.
this->Temp = CoolDown(this->Temp, this->CoolDownRate);
// Announce progress
double progress = (i+this->TotalIterations) /
static_cast<double>(this->MaxNumberOfIterations);
this->InvokeEvent(vtkCommand::ProgressEvent, static_cast<void *>(&progress));
} // End loop this->IterationsPerLayout
// Check for completion of layout
this->TotalIterations += this->IterationsPerLayout;
if (this->TotalIterations >= this->MaxNumberOfIterations)
{
// Make sure no vertex is on top of another vertex
this->ResolveCoincidentVertices();
// I'm done
this->LayoutComplete = 1;
}
// Mark points as modified
this->Graph->GetPoints()->Modified();
}
void vtkCommunity2DLayoutStrategy::ResolveCoincidentVertices()
{
// Note: This algorithm is stupid but was easy to implement
// please change or improve if you'd like. :)
// Basically see if the vertices are within a tolerance
// of each other (do they fall into the same bucket).
// If the vertices do fall into the same bucket give them
// some random displacements to resolve coincident and
// repeat until we have no coincident vertices
// Get the number of vertices in the graph datastructure
vtkIdType numVertices = this->Graph->GetNumberOfVertices();
// Get a quick pointer to the point data
vtkPoints* pts = this->Graph->GetPoints();
vtkFloatArray *array = vtkFloatArray::SafeDownCast(pts->GetData());
float *rawPointData = array->GetPointer(0);
// Place the vertices into a giant grid (100xNumVertices)
// and see if you have any collisions
vtkBitArray *giantGrid = vtkBitArray::New();
vtkIdType xDim =
static_cast<int>(sqrt(static_cast<double>(numVertices)) * 10);
vtkIdType yDim =
static_cast<int>(sqrt(static_cast<double>(numVertices)) * 10);
vtkIdType gridSize = xDim * yDim;
giantGrid->SetNumberOfValues(gridSize);
// Initialize array to zeros
for(vtkIdType i=0; i<gridSize; ++i)
{
giantGrid->SetValue(i, 0);
}
double bounds[6], paddedBounds[6];
this->Graph->GetBounds(bounds);
// Give bounds a 10% padding
paddedBounds[0] = bounds[0] - (bounds[1]-bounds[0])*.1;
paddedBounds[1] = bounds[1] + (bounds[1]-bounds[0])*.1;
paddedBounds[2] = bounds[2] - (bounds[3]-bounds[2])*.1;
paddedBounds[3] = bounds[3] + (bounds[3]-bounds[2])*.1;
paddedBounds[4] = paddedBounds[5] = 0;
int totalCollisionOps = 0;
for(vtkIdType i=0; i<numVertices; ++i)
{
int rawIndex = i * 3;
// Compute indices into the buckets
int indexX = static_cast<int>(
(rawPointData[rawIndex]-paddedBounds[0]) /
(paddedBounds[1]-paddedBounds[0]) * (xDim-1) + .5);
int indexY = static_cast<int>(
(rawPointData[rawIndex+1]-paddedBounds[2]) /
(paddedBounds[3]-paddedBounds[2]) * (yDim-1) + .5);
// See if you collide with another vertex
if (giantGrid->GetValue(indexX + indexY*xDim))
{
// Oh my... try to get yourself out of this
// by randomly jumping to a place that doesn't
// have another vertex
bool collision = true;
float jumpDistance = 5.0*(paddedBounds[1]-paddedBounds[0])/xDim; // 2.5 grid spaces max
int collisionOps = 0;
// You get 10 trys and then we have to punt
while (collision && (collisionOps < 10))
{
collisionOps++;
// Move
rawPointData[rawIndex] += jumpDistance*(vtkMath::Random() - .5);
rawPointData[rawIndex+1] += jumpDistance*(vtkMath::Random() - .5);
// Test
indexX = static_cast<int>(
(rawPointData[rawIndex]-paddedBounds[0]) /
(paddedBounds[1]-paddedBounds[0]) * (xDim-1) + .5);
indexY = static_cast<int>(
(rawPointData[rawIndex+1]-paddedBounds[2]) /
(paddedBounds[3]-paddedBounds[2]) * (yDim-1) + .5);
if (!giantGrid->GetValue(indexX + indexY*xDim))
{
collision = false; // yea
}
} // while
totalCollisionOps += collisionOps;
} // if collide
// Put into a bucket
giantGrid->SetValue(indexX + indexY*xDim, 1);
}
// Delete giantGrid
giantGrid->Initialize();
giantGrid->Delete();
// Report number of collision operations just for sanity check
// vtkWarningMacro("Collision Ops: " << totalCollisionOps);
}
void vtkCommunity2DLayoutStrategy::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "RandomSeed: " << this->RandomSeed << endl;
os << indent << "MaxNumberOfIterations: " << this->MaxNumberOfIterations << endl;
os << indent << "IterationsPerLayout: " << this->IterationsPerLayout << endl;
os << indent << "InitialTemperature: " << this->InitialTemperature << endl;
os << indent << "CoolDownRate: " << this->CoolDownRate << endl;
os << indent << "RestDistance: " << this->RestDistance << endl;
os << indent << "EdgeWeightField: " << (this->EdgeWeightField ? this->EdgeWeightField : "(none)") << endl;
os << indent << "CommunityArrayName: " << (this->CommunityArrayName ? this->CommunityArrayName : "(none)") << endl;
os << indent << "CommunityStrength: " << this->CommunityStrength << endl;
}
|