1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
#include "vtkCosmicTreeLayoutStrategy.h"
#include "vtkObjectFactory.h"
#include "vtkDataSetAttributes.h"
#include "vtkDoubleArray.h"
#include "vtkIdTypeArray.h"
#include "vtkMath.h"
#include "vtkPoints.h"
#include "vtkTree.h"
#include "vtksys/ios/sstream"
#include <vector>
#include <algorithm>
#include <math.h>
#ifdef VTK_USE_BOOST
# include "vtkBoostBreadthFirstSearchTree.h"
#endif
// Define to print debug showing convergence (or lack thereof) of loop to find enclosing radius, Re
#undef VTK_COSMIC_DBG
vtkStandardNewMacro(vtkCosmicTreeLayoutStrategy);
/// Represent a circle to be placed
class vtkCosmicTreeEntry
{
public:
vtkCosmicTreeEntry( vtkIdType id, vtkIdType index, double radius )
{
this->Radius = fabs( radius );
this->Index = index;
this->Id = id;
this->Alpha = 0.;
for ( int i = 0; i < 3; ++ i )
this->Center[i] = 0.;
}
void ComputeCenterFromAlpha( double Re )
{
double R = Re - this->Radius;
this->Center[0] = R * cos( this->Alpha );
this->Center[1] = R * sin( this->Alpha );
}
double PlaceCounterClockwise( const vtkCosmicTreeEntry& neighbor, double Re )
{
double ri = neighbor.Radius;
double rj = this->Radius;
double Ri = Re - ri;
double Rj = Re - rj;
double rij = ri + rj;
double dRe = Re - rij;
if ( dRe < 0 )
{
// Circles will not fit in another of radius Re.
// Return how much to increment Re so that they will.
this->Alpha = neighbor.Alpha + vtkMath::Pi();
this->ComputeCenterFromAlpha( Re );
return -dRe;
}
// OK, expect a good answer from acos().
this->Alpha = neighbor.Alpha + acos( ( rij * rij - ( Ri * Ri + Rj * Rj ) ) / ( -2. * Ri * Rj ) );
this->ComputeCenterFromAlpha( Re );
return 0.;
}
double Defect( const vtkCosmicTreeEntry& other ) const
{
// Assumes Center is valid
double d = 0.;
for ( int i = 0; i < 2; ++ i )
{
double s = this->Center[i] - other.Center[i];
d += s * s;
}
// tangent circles should return 0.0. Overlapping circles return > 0. Values <= 0.0 OK.
return this->Radius + other.Radius - sqrt( d );
}
double Defect( const vtkCosmicTreeEntry& neighbor, double Re )
{
double ri = neighbor.Radius;
double rj = this->Radius;
double rij = ri + rj;
return rij - Re;
}
bool operator < ( const vtkCosmicTreeEntry& other ) const
{
// Note reversed checks for Radius. we want sorted in descending order...
if ( this->Radius > other.Radius )
return true;
else if ( this->Radius < other.Radius )
return false;
if ( this->Index < other.Index )
return true;
else if ( this->Index > other.Index )
return false;
if ( this->Id < other.Id )
return true;
return false;
}
double Radius;
double Alpha;
vtkIdType Index;
vtkIdType Id;
double Center[3];
};
/**\brief Lay out a single level quickly.
*
* This computes coordinates for the center of each node given a set of unsorted input radii.
* The nodes are returned sorted from highest radius to lowest and with the node center coordinates set.
* The enclosing circle has its center at the origin and its radius is returned in \a Re.
*
* This version does not allow the largest input circle to touch the center of the enclosing circle
* whose radius, \a Re, we are computing.
* Also, the placements generated by this method will not leave circles tangent but will guarantee
* that each circle "owns" some positive angular slice of the enclosing circle's area (meaning that
* there is a straight, unobstructed path to the center of the enclosing circle from the center of
* each input circle).
*
* @param[in] N The number of nodes (technically not needed since circles.size() provides it, but we need it as a vtkIdType).
* @param[in,out] circles A vector of (x,y,z,r,child,idx) tuples for each node.
* @param[out] Re The radius of the enclosing circle.
*/
static int vtkCosmicTreeLayoutStrategyComputeCentersQuick(
vtkIdType N, std::vector<vtkCosmicTreeEntry>& circles, double& Re )
{
int i;
std::sort( circles.begin(), circles.end() );
if ( N <= 0 )
{
return 0;
}
else if ( N == 1 )
{
// When there's only a single child, create a concentric layout
Re = circles[0].Radius * 1.25;
for ( i = 0; i < 3; ++ i )
{
circles[0].Center[i] = 0.;
}
}
else if ( N == 2 )
{
Re = circles[0].Radius + circles[1].Radius;
circles[0].Center[0] = circles[1].Radius;
circles[1].Center[0] = - circles[0].Radius;
for ( i = 1; i < 3; ++ i )
{
circles[0].Center[i] = 0.;
circles[1].Center[i] = 0.;
}
}
else
{
// Choose an initial slice of the enclosing circle for each
// input circle, based on radius if possible. If any slice
// is close to or exceeds pi, then just start them out
// with equal slices (independent of radius).
double Rtot = 0.;
const double twopi = 2. * vtkMath::Pi();
std::vector<double> ang;
std::vector<double> angp;
ang.resize( N );
angp.resize( N );
for ( i = 0; i < N; ++ i )
{
Rtot += circles[i].Radius;
}
double factor = twopi / Rtot;
const double limit = 0.75 * vtkMath::Pi();
for ( i = 0; i < N; ++ i )
{
ang[i] = factor * circles[i].Radius;
if ( ang[i] > limit )
{
factor = twopi / circles.size();
for ( i = 0; i < N; ++ i )
{
ang[i] = factor;
}
break;
}
}
// Iterate until we have things close to fully packed or we reach
// the maximum number of iterations.
double err = twopi;
double olderr;
int iter = 0;
int bonk = 0; // number of successive times we are forced to set Re = 2.01*circles[0].Radius
do
{
// Compute a new enclosing radius. Do not allow it to shrink to
// the point where the largest enclosed circle overlaps the origin.
Re = circles[0].Radius * ( 1. + 1. / sin( ang[0] / 2. ) );
if ( 1.99 * circles[0].Radius > Re )
{
Re = 2.01 * circles[0].Radius;
++ bonk;
}
else
{
bonk = 0;
}
double cumAngle = 0.;
double sumAngp = 0.;
// Compute new angles of the enclosing circle subtended by each circle
// Then compute the error associated with these
olderr = err;
err = 0.;
for ( i = 0; i < N; ++ i )
{
vtkCosmicTreeEntry* circ = &circles[i];
circ->Alpha = ang[i] / 2. + cumAngle;
cumAngle += ang[i];
sumAngp += ( angp[i] = 2. * asin( circ->Radius / ( Re - circ->Radius ) ) );
double localErr = fabs( angp[i] - ang[i] );
if ( localErr > err )
{
err = localErr;
}
}
for ( i = 0; i < N; ++ i )
{
if ( angp[i] / sumAngp > 0.5 )
{
sumAngp -= angp[i];
angp[i] = sumAngp;
sumAngp *= 2.;
}
ang[i] = angp[i] / sumAngp * twopi;
}
++ iter;
}
//while ( olderr > err && err > 1.e-8 && iter < 20 );
//while ( ( olderr > err || err > 1.e-8 ) && ( iter < 31 && bonk < 3 ) );
//while ( err > 1.e-8 && ( iter < 31 && bonk < 3 ) );
while ( fabs( err - olderr ) > 1.e-3 && err > 1.e-8 && ( iter < 31 && bonk < 3 ) );
//while ( err > 1.e-8 && iter < 51 );
for ( i = 0; i < N; ++ i )
{
circles[i].ComputeCenterFromAlpha( Re );
}
}
return 0; // in the future, we might return other values when the number of iterations is exceeded, etc.
}
vtkCosmicTreeLayoutStrategy::vtkCosmicTreeLayoutStrategy()
{
this->SizeLeafNodesOnly = 1;
this->LayoutDepth = 0;
this->LayoutRoot = -1;
this->NodeSizeArrayName = 0;
}
vtkCosmicTreeLayoutStrategy::~vtkCosmicTreeLayoutStrategy()
{
this->SetNodeSizeArrayName( 0 );
}
void vtkCosmicTreeLayoutStrategy::PrintSelf( ostream& os, vtkIndent indent )
{
this->Superclass::PrintSelf( os, indent );
os << indent << "SizeLeafNodesOnly: " << ( this->SizeLeafNodesOnly ? "TRUE" : "FALSE" ) << "\n";
os << indent << "LayoutRoot: " << this->LayoutRoot << "\n";
os << indent << "LayoutDepth: " << this->LayoutDepth << "\n";
os << indent << "NodeSizeArrayName: \"" << ( this->NodeSizeArrayName ? this->NodeSizeArrayName : "null" ) << "\"\n";
}
void vtkCosmicTreeLayoutStrategy::Layout()
{
if ( ! this->Graph || this->Graph->GetNumberOfVertices() <= 0 || this->Graph->GetNumberOfEdges() <= 0 )
{ // fail silently if the graph is empty in some way.
return;
}
vtkTree* tree = vtkTree::SafeDownCast( this->Graph );
bool input_is_tree = ( tree != NULL );
if ( ! input_is_tree )
{ // Extract a tree from the graph.
#ifdef VTK_USE_BOOST
// Use the BFS search tree to perform the layout
vtkBoostBreadthFirstSearchTree* bfs = vtkBoostBreadthFirstSearchTree::New();
bfs->CreateGraphVertexIdArrayOn();
bfs->SetInputData( this->Graph );
bfs->Update();
tree = vtkTree::New();
tree->ShallowCopy( bfs->GetOutput() );
bfs->Delete();
#else
vtkErrorMacro( "Layout only works on vtkTree unless VTK_USE_BOOST is on." );
#endif
}
// Create a new point set
vtkIdType numVertices = tree->GetNumberOfVertices();
if ( numVertices == 0 )
{
vtkWarningMacro( "Tree has no vertices." );
return;
}
vtkPoints* newPoints = vtkPoints::New();
newPoints->SetNumberOfPoints( numVertices );
RadiusMode mode = NONE;
vtkDoubleArray* radii; // radius of each node. May be read-only, read-write, or write-only.
vtkDoubleArray* scale; // scale factor associated with each non-leaf node when SizeLeafNodesOnly is false.
vtkDataArray* inputRadii = 0;
if ( this->NodeSizeArrayName && strlen( this->NodeSizeArrayName ) )
{
inputRadii = this->Graph->GetVertexData()->GetArray( this->NodeSizeArrayName );
}
if ( this->SizeLeafNodesOnly )
{
mode = LEAVES;
radii = this->CreateRadii( numVertices, -1., inputRadii );
scale = 0; // No scale factor is necessary
this->Graph->GetVertexData()->AddArray( radii );
this->Graph->GetVertexData()->SetActiveScalars( radii->GetName() );
radii->Delete();
}
else
{
// Since node size is specified at all nodes, the layout is overconstrained
// and we must compute a scale factor for each non-leaf node to make the
// children fit inside.
scale = this->CreateScaleFactors( numVertices );
this->Graph->GetVertexData()->AddArray( scale );
scale->Delete();
radii = vtkDoubleArray::SafeDownCast( inputRadii );
// Did we find a node size spec?
if ( radii )
{
mode = ALL; // read-only
}
else
{
mode = NONE; // write-only, all nodes fixed size.
radii = this->CreateRadii( numVertices, 1., 0 );
this->Graph->GetVertexData()->AddArray( radii );
this->Graph->GetVertexData()->SetActiveScalars( radii->GetName() );
radii->Delete();
}
}
// Setting the root to position 0,0 but this could
// be whatever you want and should be controllable
// through ivars in the future
vtkIdType currentRoot = this->LayoutRoot < 0 ? tree->GetRoot() : this->LayoutRoot;
newPoints->SetPoint( currentRoot, 0, 0, 0 );
// If only leaf nodes are to have their sizes respected,
// we must compute a new size array
this->LayoutChildren( tree, newPoints, radii, scale, currentRoot, this->LayoutDepth < 0 ? 0 : this->LayoutDepth, mode );
double metaRoot[4] = { 0., 0., 0., 1. }; // "parent" of root
this->OffsetChildren( tree, newPoints, radii, scale, metaRoot, currentRoot, this->LayoutDepth < 0 ? 0 : this->LayoutDepth, mode );
#ifdef VTK_COSMIC_DBG
cout << "octr = [ ";
for ( vtkIdType k = 0; k < newPoints->GetNumberOfPoints(); ++ k )
{
double* x = newPoints->GetPoint( k );
//double r = radii->GetValue( k );
//cout << "k: " << k << " x: " << x[0] << " y: " << x[1] << " r: " << r << "\n";
cout << x[0] << " " << x[1] << "\n";
}
cout << "]; orad = [ ";
#endif // VTK_COSMIC_DBG
for ( vtkIdType k = 0; k < newPoints->GetNumberOfPoints(); ++ k )
{
double r = radii->GetValue( k );
#ifdef VTK_COSMIC_DBG
cout << r << "\n";
#endif // VTK_COSMIC_DBG
// FIXME: the GraphMapper expects a diameter. Make it accept radii instead.
radii->SetValue( k, 2. * r );
}
#ifdef VTK_COSMIC_DBG
cout << "];\nplotbub( octr, orad );\n";
#endif // VTK_COSMIC_DBG
// Copy coordinates back into the original graph
if ( input_is_tree )
{
this->Graph->SetPoints( newPoints );
}
#ifdef VTK_USE_BOOST
else
{
// Reorder the points based on the mapping back to graph vertex ids
vtkPoints* reordered = vtkPoints::New();
reordered->SetNumberOfPoints( newPoints->GetNumberOfPoints() );
for ( vtkIdType i = 0; i < reordered->GetNumberOfPoints(); ++ i )
{
reordered->SetPoint( i, 0, 0, 0 );
}
vtkIdTypeArray* graphVertexIdArr = vtkIdTypeArray::SafeDownCast(
tree->GetVertexData()->GetAbstractArray( "GraphVertexId" ) );
for ( vtkIdType i = 0; i < graphVertexIdArr->GetNumberOfTuples(); ++ i )
{
reordered->SetPoint(graphVertexIdArr->GetValue( i ), newPoints->GetPoint( i ) );
}
this->Graph->SetPoints( reordered );
tree->Delete();
reordered->Delete();
}
#endif
// Clean up.
newPoints->Delete();
}
void vtkCosmicTreeLayoutStrategy::LayoutChildren(
vtkTree* tree, vtkPoints* pts, vtkDoubleArray* radii, vtkDoubleArray* scale,
vtkIdType root, int depth, RadiusMode mode )
{
vtkIdType child;
vtkIdType childIdx;
vtkIdType numberOfChildren = tree->GetNumberOfChildren( root );
// State for the layout:
double Rext; // The size of a circle that encloses the children (or the scaling factor when mode==ALL).
std::vector<vtkCosmicTreeEntry> circles;
// I. Compute radii of children as required:
switch ( mode )
{
case ALL:
// No computation required... All radii are as specified. We do need to fetch the radii, though.
for ( childIdx = 0; childIdx < numberOfChildren; ++ childIdx )
{
child = tree->GetChild( root, childIdx );
circles.push_back( vtkCosmicTreeEntry( child, childIdx, radii->GetValue( child ) ) );
}
break;
case NONE:
// Unit size means we can stop descending when depth == 0... all entries in radii are initialized to 1.0
if ( depth < 0 && this->LayoutDepth >= 0 )
return;
VTK_FALLTHROUGH;
case LEAVES:
// We must descend all the way down to the leaves, regardless of LayoutDepth.
for ( childIdx = 0; childIdx < numberOfChildren; ++ childIdx )
{
child = tree->GetChild( root, childIdx );
this->LayoutChildren( tree, pts, radii, scale, child, depth - 1, mode );
circles.push_back( vtkCosmicTreeEntry( child, childIdx, radii->GetValue( child ) ) );
}
break;
}
// II. Now that we have radii of children, we can lay out this node
if ( numberOfChildren <= 0 )
{
Rext = radii->GetValue( root );
Rext = ( mode == ALL || Rext <= 0. ) ? 1. : Rext;
}
else
{
vtkCosmicTreeLayoutStrategyComputeCentersQuick( numberOfChildren, circles, Rext );
std::vector<vtkCosmicTreeEntry>::iterator cit;
for ( cit = circles.begin(); cit != circles.end(); ++ cit )
{
pts->SetPoint( cit->Id, cit->Center );
}
}
if ( mode == ALL )
{
scale->SetValue( root, Rext );
}
else
{
radii->SetValue( root, Rext );
}
}
void vtkCosmicTreeLayoutStrategy::OffsetChildren(
vtkTree* tree, vtkPoints* pts, vtkDoubleArray* radii, vtkDoubleArray* scale,
double parent[4], vtkIdType root, int depth, RadiusMode mode )
{
//cout << "depth: " << depth << " LOD: " << this->LayoutDepth << "\n";
if ( depth < 0 && this->LayoutDepth > 0 )
return;
vtkIdType childIdx;
double nextParent[4];
switch ( mode )
{
case ALL:
// We must apply the scale factor.
// III. Offset this node
pts->GetPoint( root, nextParent );
for ( int i = 0; i < 3; ++ i )
{
nextParent[i] = ( nextParent[i] + parent[i] ) * parent[3];
}
nextParent[3] = parent[3] / scale->GetValue( root );
pts->SetPoint( root, nextParent );
// IV. Offset children as required
for ( childIdx = 0; childIdx < tree->GetNumberOfChildren( root ); ++ childIdx )
{
this->OffsetChildren( tree, pts, radii, scale, nextParent, tree->GetChild( root, childIdx ), depth - 1, mode );
}
break;
case NONE:
case LEAVES:
// No scale factor
// III. Offset this node
pts->GetPoint( root, nextParent );
for ( int i = 0; i < 3; ++ i )
{
nextParent[i] += parent[i];
}
pts->SetPoint( root, nextParent );
// IV. Offset children as required
for ( childIdx = 0; childIdx < tree->GetNumberOfChildren( root ); ++ childIdx )
{
this->OffsetChildren( tree, pts, radii, scale, nextParent, tree->GetChild( root, childIdx ), depth - 1, mode );
}
break;
}
}
vtkDoubleArray* vtkCosmicTreeLayoutStrategy::CreateRadii( vtkIdType numVertices, double initialValue, vtkDataArray* inputRadii )
{
vtkDoubleArray* radii = vtkDoubleArray::New();
radii->SetNumberOfComponents( 1 );
radii->SetNumberOfTuples( numVertices );
if ( ! inputRadii )
{
// Initialize all radii to some value...
radii->FillComponent( 0, initialValue );
}
else
{
radii->DeepCopy( inputRadii );
}
radii->SetName( "TreeRadius" );
return radii;
}
vtkDoubleArray* vtkCosmicTreeLayoutStrategy::CreateScaleFactors( vtkIdType numVertices )
{
vtkDoubleArray* scale = vtkDoubleArray::New();
scale->SetNumberOfComponents( 1 );
scale->SetNumberOfTuples( numVertices );
scale->FillComponent( 0, -1. ); // Initialize all scale factors to an invalid value...
scale->SetName( "TreeScaleFactor" );
return scale;
}
|