1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkSpanTreeLayoutStrategy.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
// File: vtkSpanTreeLayoutStrategy.cxx
// Graph visualization library for VTK
// (c) 2003 D.J. Duke
#include "vtkSpanTreeLayoutStrategy.h"
#include "vtkConeLayoutStrategy.h"
#include "vtkObjectFactory.h"
#include "vtkMutableDirectedGraph.h"
#include "vtkTree.h"
#include "vtkEdgeListIterator.h"
#include "vtkInEdgeIterator.h"
#include "vtkOutEdgeIterator.h"
#include "vtkGraphLayout.h"
#include "vtkGraph.h"
#include "vtkPoints.h"
#include "vtkDoubleArray.h"
#include "vtkIdTypeArray.h"
#include "vtkDataSetAttributes.h"
#include "vtkSmartPointer.h"
//--------------------------------------------------------------------------
vtkStandardNewMacro(vtkSpanTreeLayoutStrategy);
vtkSpanTreeLayoutStrategy::vtkSpanTreeLayoutStrategy()
{
this->TreeLayout = vtkConeLayoutStrategy::New();
this->DepthFirstSpanningTree = false;
}
vtkSpanTreeLayoutStrategy::~vtkSpanTreeLayoutStrategy()
{
if (this->TreeLayout)
{
this->TreeLayout->Delete();
this->TreeLayout = NULL;
}
}
// Edges that cross levels more than one level of the layout
// will have edge-points inserted to match the structure of
// the rest of the graph. However, in order to compute the
// position of these points, we first need to lay out a
// graph in which these edge points are represented by real
// vertices. This struct is used to keep trach of the
// relationship between the proxy nodes in the graph used
// to compute the layout, and edges in the original graph.
struct _vtkBridge_s
{
vtkEdgeType edge;
vtkIdType delta;
vtkIdType anchor[2];
};
void vtkSpanTreeLayoutStrategy::Layout()
{
vtkSmartPointer<vtkPoints> points
= vtkSmartPointer<vtkPoints>::New();
vtkSmartPointer<vtkMutableDirectedGraph> spanningDAG
= vtkSmartPointer<vtkMutableDirectedGraph>::New();
vtkSmartPointer<vtkEdgeListIterator> edges
= vtkSmartPointer<vtkEdgeListIterator>::New();
vtkSmartPointer<vtkGraphLayout> layoutWorker
= vtkSmartPointer<vtkGraphLayout>::New();
vtkSmartPointer<vtkOutEdgeIterator> outEdges
= vtkSmartPointer<vtkOutEdgeIterator>::New();
vtkSmartPointer<vtkInEdgeIterator> inEdges
= vtkSmartPointer<vtkInEdgeIterator>::New();
// Auxiliary structures used for building a spanning tree
int *level;
int *marks;
vtkIdType *queue;
vtkIdType front, back;
// Handle for the layout computed for the spanning tree
vtkPoints *layout;
// Auxiliary structures for placing bends into edges.
_vtkBridge_s *editlist;
_vtkBridge_s link;
link.delta = 0;
link.anchor[1] = 0;
vtkIdType editsize;
vtkEdgeType edge;
vtkIdType i, nrNodes, nrEdges;
double pointS[3], pointT[3], pointA[3];
double edgePoints[6];
// ----------------------------------------------------------
vtkDebugMacro(<<"vtkSpanTreeLayoutStrategy executing.");
// Ensure that all required inputs are available.
nrNodes = this->Graph->GetNumberOfVertices();
nrEdges = this->Graph->GetNumberOfEdges();
if (nrNodes == 0 || nrEdges == 0 || !this->TreeLayout)
{
if (nrNodes == 0)
{
vtkErrorMacro(<< "Cannot execute - no nodes in input." );
}
if (nrEdges == 0)
{
vtkErrorMacro(<< "Cannot execute - no edges in input." );
}
if (!this->TreeLayout)
{
vtkErrorMacro(<< "Cannot execute - no tree layout strategy." );
}
return;
}
// Compute a spanning tree from the graph. This is done inline here
// rather than via a Boost class so we can offer a choice of spanning
// tree. Graph traversal is supported by a queue, and during
// traversal the (tree)level is calculated for each vertex.
level = new int [nrNodes];
marks = new int [nrNodes];
queue = new vtkIdType [nrNodes];
// Initialize spanning tree with all vertices of the graph.
for (vtkIdType v = 0; v < nrNodes; v++)
{
spanningDAG->AddVertex();
marks[v] = 0;
}
// Strategy: iterate over the vertices of the graph.
// As each unvisited vertex is found, we perform a traversal starting
// from that vertex. The result is technically a spanning forest.
for (vtkIdType v = 0; v < nrNodes; v++)
{
if (!marks[v]) // not visited
{
front = back = 0;
queue[back++] = v; // push node v
level[v] = 0;
marks[v] = 1; // mark as visited
while (back != front)
{
vtkIdType src;
if (this->DepthFirstSpanningTree)
{
src = queue[--back]; // stack discipline = depth-first traversal
}
else
{
src = queue[front++]; // queue discipline = breadth-first traversal
}
// Look at outgoing edges from this node,
// adding any unseen targets to the queue,
// and edges to the spanning tree.
this->Graph->GetOutEdges(src, outEdges);
while (outEdges->HasNext())
{
vtkIdType dst = outEdges->Next().Target;
if (marks[dst] == 0) // not seen or done
{
level[dst] = level[src]+1;
queue[back++] = dst;
spanningDAG->AddGraphEdge(src,dst);
marks[dst] = 1; //seen
}
}
// Look at incoming edges: as per outgoing edges.
this->Graph->GetInEdges(src, inEdges);
while (inEdges->HasNext())
{
vtkIdType origin = inEdges->Next().Source;
if (marks[origin] == 0) // not seen or done
{
level[origin] = level[src]+1;
queue[back++] = origin;
spanningDAG->AddGraphEdge(src,origin);
marks[origin] = 1; //seen
}
}
} // while back != front
} // if !marks[v]
} // for each vertex
// Check each edge to see if it spans more than one level of
// the tree. If it does, the edge will be drawn using edge-points,
// and before we lay out the tree, we need to insert proxy nodes
// to compute the position for those points.
editsize = 0;
editlist = new _vtkBridge_s[nrEdges];
this->Graph->GetEdges(edges);
while (edges->HasNext())
{
link.edge = edges->Next();
// Loop ...
if (link.edge.Source == link.edge.Target)
{
link.anchor[0] = spanningDAG->AddVertex();
spanningDAG->AddEdge(link.edge.Source,link.anchor[0]);
editlist[editsize++] = link;
continue;
}
// If the difference in level between the start and end nodes
// is greater than one, this edge, by definition, is not
// present in the layout tree.
link.delta = level[link.edge.Target] - level[link.edge.Source];
if (abs(static_cast<int>(link.delta)) > 1)
{
link.anchor[0] = spanningDAG->AddVertex();
spanningDAG->AddEdge(link.delta > 0 ? link.edge.Source : link.edge.Target, link.anchor[0]);
if (abs(static_cast<int>(link.delta)) > 2)
{
link.anchor[1] = spanningDAG->AddVertex();
spanningDAG->AddEdge(link.anchor[0], link.anchor[1]);
}
editlist[editsize++] = link;
}
}
// Layout the tree using the layout filter provided.
layoutWorker->SetLayoutStrategy(this->TreeLayout);
layoutWorker->SetInputData(spanningDAG);
layoutWorker->Update();
layout = layoutWorker->GetOutput()->GetPoints();
// Copy the node positions for nodes in the original
// graph from the layout tree to the output positions.
points->SetNumberOfPoints(nrNodes);
for (i = 0; i < nrNodes; i++)
{
points->SetPoint(i, layout->GetPoint(i));
}
// Now run through the edit list, computing the position for
// each of the edge points
for (i = 0; i < editsize; i++)
{
link = editlist[i];
if (link.delta == 0)
{
// Loop: Each loop is drawn as an edge with 2 edge points. The x & y
// coordinates have been fixed by the layout. The z coordinates are
// scaled to that the edge points are 1/3 of the distance between
// levels, above and below the node.
layout->GetPoint(link.edge.Source, pointS);
layout->GetPoint(link.anchor[0], pointA);
edgePoints[0] = edgePoints[3] = pointA[0];
edgePoints[1] = edgePoints[4] = pointA[1];
edgePoints[2] = pointS[2] + (pointA[2]-pointS[2])/3.0;
edgePoints[5] = pointS[2] - (pointA[2]-pointS[2])/3.0;
this->Graph->SetEdgePoints(link.edge.Id, 2, edgePoints);
}
else if (link.delta > 1)
{
layout->GetPoint(link.edge.Source, pointS);
layout->GetPoint(link.edge.Target, pointT);
layout->GetPoint(link.anchor[0], pointA);
edgePoints[0] = pointA[0];
edgePoints[1] = pointA[1];
edgePoints[2] = pointS[2] + (pointT[2] - pointS[2])/link.delta;
if (link.delta > 2)
{
layout->GetPoint(link.anchor[1], pointA);
edgePoints[3] = edgePoints[0];
edgePoints[4] = edgePoints[1];
edgePoints[5] = pointS[2] + (link.delta-1)*(pointT[2] - pointS[2])/link.delta;
this->Graph->SetEdgePoints(link.edge.Id, 2, edgePoints);
}
else
{
this->Graph->SetEdgePoints(link.edge.Id, 1, edgePoints);
}
}
else if (link.delta < -1)
{
int delta = -link.delta;
layout->GetPoint(link.edge.Source, pointS);
layout->GetPoint(link.edge.Target, pointT);
layout->GetPoint(link.anchor[0], pointA);
edgePoints[0] = pointA[0];
edgePoints[1] = pointA[1];
edgePoints[2] = pointS[2] + (pointT[2] - pointS[2])/delta;
if (link.delta < -2)
{
layout->GetPoint(link.anchor[1], pointA);
edgePoints[3] = edgePoints[0];
edgePoints[4] = edgePoints[1];
edgePoints[5] = pointS[2] + (delta-1)*(pointT[2] - pointS[2])/delta;
this->Graph->SetEdgePoints(link.edge.Id, 2, edgePoints);
}
else
{
this->Graph->SetEdgePoints(link.edge.Id, 1, edgePoints);
}
}
}
// Clean up temporary storage.
delete [] editlist;
delete [] level;
delete [] marks;
delete [] queue;
this->Graph->SetPoints(points);
vtkDebugMacro(<<"SpanTreeLayoutStrategy complete.");
}
void vtkSpanTreeLayoutStrategy::PrintSelf(ostream& os, vtkIndent indent)
{
vtkGraphLayoutStrategy::PrintSelf(os,indent);
os << indent << "TreeLayout: " << (this->TreeLayout ? "" : "(none)") << endl;
if (this->TreeLayout)
{
this->TreeLayout->PrintSelf(os, indent.GetNextIndent());
}
os << indent << "DepthFirstSpanningTree: " << (this->DepthFirstSpanningTree ? "On" : "Off") << endl;
}
|