1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkStackedTreeLayoutStrategy.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*-------------------------------------------------------------------------
Copyright 2008 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.
-------------------------------------------------------------------------*/
#include "vtkStackedTreeLayoutStrategy.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPoints.h"
#include "vtkPointData.h"
#include "vtkFloatArray.h"
#include "vtkDataArray.h"
#include "vtkIntArray.h"
#include "vtkTree.h"
#include "vtkTreeDFSIterator.h"
#include "vtkTreeLevelsFilter.h"
#include "vtkSmartPointer.h"
#define VTK_CREATE(type, name) \
vtkSmartPointer<type> name = vtkSmartPointer<type>::New()
vtkStandardNewMacro(vtkStackedTreeLayoutStrategy);
vtkStackedTreeLayoutStrategy::vtkStackedTreeLayoutStrategy()
{
this->InteriorRadius = 6.0;
this->RingThickness = 1.0;
this->RootStartAngle = 0.;
this->RootEndAngle = 360.;
this->UseRectangularCoordinates = false;
this->Reverse = false;
this->InteriorLogSpacingValue = 1.0;
}
vtkStackedTreeLayoutStrategy::~vtkStackedTreeLayoutStrategy()
{
}
void vtkStackedTreeLayoutStrategy::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "InteriorRadius: " << this->InteriorRadius << endl;
os << indent << "RingThickness: " << this->RingThickness << endl;
os << indent << "RootStartAngle: " << this->RootStartAngle << endl;
os << indent << "RootEndAngle: " << this->RootEndAngle << endl;
os << indent << "UseRectangularCoordinates: " << this->UseRectangularCoordinates << endl;
os << indent << "Reverse: " << this->Reverse << endl;
os << indent << "InteriorLogSpacingValue: " << this->InteriorLogSpacingValue << endl;
}
void vtkStackedTreeLayoutStrategy::Layout(vtkTree* inputTree,
vtkDataArray* coordsArray,
vtkDataArray* sizeArray)
{
if( !inputTree || inputTree->GetNumberOfVertices() == 0 )
{
return;
}
if (!coordsArray)
{
vtkErrorMacro("Area array not defined.");
return;
}
vtkDataSetAttributes* data = inputTree->GetVertexData();
VTK_CREATE(vtkDoubleArray, textRotationArray);
textRotationArray->SetName( "TextRotation" );
textRotationArray->SetNumberOfComponents(1);
textRotationArray->SetNumberOfTuples(inputTree->GetNumberOfVertices());
data->AddArray( textRotationArray );
VTK_CREATE(vtkDoubleArray, textBoundedSizeArray);
textBoundedSizeArray->SetName( "TextBoundedSize" );
textBoundedSizeArray->SetNumberOfComponents(2);
textBoundedSizeArray->SetNumberOfTuples(inputTree->GetNumberOfVertices());
data->AddArray( textBoundedSizeArray );
double outer_radius = 0.0;
if (this->Reverse)
{
VTK_CREATE(vtkTreeLevelsFilter, levelFilter);
VTK_CREATE(vtkTree, newTree);
newTree->ShallowCopy( inputTree );
levelFilter->SetInputData( newTree );
levelFilter->Update();
vtkTree* levelTree = levelFilter->GetOutput();
vtkIntArray *levelArray = vtkIntArray::SafeDownCast(
levelTree->GetVertexData()->GetAbstractArray("level"));
int max_level = 0;
for( int i = 0; i < levelTree->GetNumberOfVertices(); i++ )
{
int level = levelArray->GetValue(i);
if( level > max_level )
{
max_level = level;
}
}
outer_radius = max_level*this->RingThickness + this->InteriorRadius;
}
// Get the root vertex and set it
vtkIdType rootId = inputTree->GetRoot();
float coords[4] = {this->RootStartAngle, this->RootEndAngle, 0.0, 0.0};
if (this->Reverse)
{
coords[2] = outer_radius - this->RingThickness;
coords[3] = outer_radius;
}
else
{
coords[3] = this->InteriorRadius;
}
coordsArray->SetTuple(rootId, coords);
// Now layout the children vertices
this->LayoutChildren(inputTree, coordsArray, sizeArray,
inputTree->GetNumberOfChildren(rootId),
rootId, 0, coords[2], coords[3], coords[0], coords[1]);
vtkPoints* points = vtkPoints::New();
vtkIdType numVerts = inputTree->GetNumberOfVertices();
points->SetNumberOfPoints(numVerts);
for( vtkIdType i = 0; i < numVerts; i++ )
{
double sector_coords[4];
coordsArray->GetTuple( i, sector_coords );
double x, y, z;
if( this->UseRectangularCoordinates )
{
x = 0.5*(sector_coords[0] + sector_coords[1]);
y = 0.5*(sector_coords[2] + sector_coords[3]);
z = 0.;
textRotationArray->SetValue( i, 0 );
textBoundedSizeArray->SetValue( 2*i, sector_coords[1] - sector_coords[0]);
textBoundedSizeArray->SetValue( 2*i + 1, sector_coords[3] - sector_coords[2] );
}
else
{
if( i == rootId )
{
x = y = z = 0.;
textRotationArray->SetValue( i, 0 );
textBoundedSizeArray->SetValue( 2*i, 0 );
textBoundedSizeArray->SetValue( 2*i + 1, 0 );
}
else
{
double r = (0.5*(sector_coords[3] - sector_coords[2])) + sector_coords[2];
double theta = sector_coords[0] + (0.5*(sector_coords[1]-sector_coords[0]));
x = r * cos( vtkMath::RadiansFromDegrees( theta ) );
y = r * sin( vtkMath::RadiansFromDegrees( theta ) );
z = 0.;
double sector_arc_length = r * vtkMath::RadiansFromDegrees(sector_coords[1] - sector_coords[0]);
double radial_arc_length = sector_coords[3] - sector_coords[2];
double aspect_ratio = sector_arc_length / radial_arc_length;
if( aspect_ratio > 1 )
{
//sector length is greater than radial length;
// align text with the sector
if( theta > 0. && theta < 180. )
{
textRotationArray->SetValue( i, theta - 90. );
}
else
{
textRotationArray->SetValue( i, theta + 90. );
}
textBoundedSizeArray->SetValue( 2*i, sector_arc_length );
textBoundedSizeArray->SetValue( 2*i + 1, radial_arc_length );
}
else
{
//radial length is greater than sector length;
// align text radially...
if( theta > 90. && theta < 270. )
{
textRotationArray->SetValue( i, theta - 180. );
}
else
{
textRotationArray->SetValue( i, theta );
}
textBoundedSizeArray->SetValue( 2*i, radial_arc_length );
textBoundedSizeArray->SetValue( 2*i + 1, sector_arc_length );
}
}
}
points->SetPoint(i, x, y, z);
}
inputTree->SetPoints(points);
points->Delete();
}
void vtkStackedTreeLayoutStrategy::LayoutEdgePoints(
vtkTree* inputTree,
vtkDataArray* sectorsArray,
vtkDataArray* vtkNotUsed(sizeArray),
vtkTree* outputTree)
{
VTK_CREATE(vtkTreeLevelsFilter, levelFilter);
VTK_CREATE(vtkTree, newTree);
newTree->ShallowCopy( inputTree );
levelFilter->SetInputData( newTree );
levelFilter->Update();
vtkTree* levelTree = levelFilter->GetOutput();
outputTree->ShallowCopy( levelTree );
vtkIntArray* levelArray = vtkIntArray::SafeDownCast(
levelTree->GetVertexData()->GetAbstractArray("level"));
double exteriorRadius = VTK_DOUBLE_MAX;
double sector_coords[4];
int max_level = 0;
for( int i = 0; i < outputTree->GetNumberOfVertices(); i++ )
{
int level = levelArray->GetValue(i);
if( level > max_level )
{
max_level = level;
}
if (inputTree->IsLeaf(i))
{
sectorsArray->GetTuple( i, sector_coords );
if (sector_coords[2] < exteriorRadius)
{
exteriorRadius = sector_coords[2];
}
}
}
double spacing = this->InteriorLogSpacingValue;
// The distance between level L-1 and L is s^L.
// Thus, if s < 1 then the distance between levels gets smaller in higher levels,
// if s = 1 the distance remains the same, and
// if s > 1 the distance get larger.
// The height (distance from the root) of level L, then, is
// s + s^2 + s^3 + ... + s^L, where s is the log spacing value.
// The max height (used for normalization) is
// s + s^2 + s^3 + ... + s^maxLevel.
// The quick formula for computing this is
// sum_{i=1}^{n} s^i = (s^(n+1) - 1)/(s - 1) - 1 if s != 1
// = n if s == 1
double maxHeight = max_level;
double eps = 1e-8;
double diff = spacing - 1.0 > 0 ? spacing - 1.0 : 1.0 - spacing;
if (diff > eps)
{
maxHeight = (pow(spacing, max_level+1.0) - 1.0)/(spacing - 1.0) - 1.0;
}
vtkPoints* points = vtkPoints::New();
vtkIdType rootId = outputTree->GetRoot();
vtkIdType numVerts = outputTree->GetNumberOfVertices();
points->SetNumberOfPoints(numVerts);
for( vtkIdType i = 0; i < numVerts; i++ )
{
if( !this->UseRectangularCoordinates && i == rootId )
{
points->SetPoint( i, 0, 0, 0 );
continue;
}
sectorsArray->GetTuple( i, sector_coords );
double x = 0.0;
double y = 0.0;
double z = 0.0;
if( this->UseRectangularCoordinates )
{
if( inputTree->IsLeaf(i) )
{
if( this->Reverse )
{
y = sector_coords[2];
}
else
{
y = sector_coords[3];
}
}
else
{
if( this->Reverse )
{
y = this->InteriorRadius - this->RingThickness*(maxHeight + maxHeight - inputTree->GetLevel(i));
}
else
{
y = this->InteriorRadius + this->RingThickness*(maxHeight + maxHeight - inputTree->GetLevel(i));
}
}
x = 0.5*(sector_coords[0] + sector_coords[1]);
z = 0.;
}
else
{
double r;
if( inputTree->IsLeaf(i) )
{
r = sector_coords[2];
}
else
{
if (diff <= eps)
{
r = outputTree->GetLevel(i)/maxHeight;
}
else
{
r = ((pow(spacing, outputTree->GetLevel(i)+1.0) - 1.0)/(spacing - 1.0) - 1.0)/maxHeight;
}
// scale the spacing value based on the radius of the
// circle we have to work with...
r *= exteriorRadius;
}
double theta = sector_coords[0] + (0.5*(sector_coords[1]-sector_coords[0]));
x = r * cos( vtkMath::RadiansFromDegrees( theta ) );
y = r * sin( vtkMath::RadiansFromDegrees( theta ) );
z = 0.;
}
points->SetPoint(i, x, y, z);
}
outputTree->SetPoints(points);
points->Delete();
}
void vtkStackedTreeLayoutStrategy::LayoutChildren(
vtkTree *tree, vtkDataArray *coordsArray, vtkDataArray *sizeArray,
vtkIdType nchildren, vtkIdType parent, vtkIdType begin,
float parentInnerRad, float parentOuterRad,
float parentStartAng, float parentEndAng)
{
double new_interior_rad = 0.0;
double new_outer_rad = 0.0;
if (this->Reverse)
{
new_interior_rad = parentInnerRad - this->RingThickness;
new_outer_rad = parentInnerRad;
}
else
{
new_interior_rad = parentOuterRad;
new_outer_rad = new_interior_rad + this->RingThickness;
}
//FIXME - we may want to do this instead...
//double new_outer_rad = new_interior_rad +this->RingThickness[level];
double radial_spacing = this->ShrinkPercentage * this->RingThickness;
new_outer_rad -= radial_spacing;
//new_interior_rad += 0.5*radial_spacing;
//now calculate the width of each of the sectors for each vertex
// first calculate the total summed weight for each of the children vertices
double total_weighted_sum = 0;
vtkIdType i;
for( i = begin; i < nchildren; i++)
{
if (sizeArray)
{
total_weighted_sum +=
static_cast<float>(sizeArray->GetTuple1(tree->GetChild(parent, i)));
}
else
{
total_weighted_sum += 1.0;
}
}
// If we are doing radial layout, put extra space on the full rings
// so the first and last children don't butt up against each other.
vtkIdType num_spaces = nchildren - 1;
double parent_angle = parentEndAng - parentStartAng;
if (!this->UseRectangularCoordinates && parent_angle == 360.0)
{
num_spaces = nchildren;
}
double available_angle = parent_angle;
double conversion = vtkMath::Pi()/180.0;
double spacing = 0.0;
if (nchildren > 1)
{
double parent_length;
if (this->UseRectangularCoordinates)
{
parent_length = parent_angle;
}
else
{
parent_length = conversion * parent_angle * new_outer_rad;
}
double spacing_length;
if (radial_spacing * num_spaces > 0.25 * parent_length)
{
spacing_length = 0.25 * parent_length;
}
else
{
spacing_length = radial_spacing * num_spaces;
}
double total_space;
if (this->UseRectangularCoordinates)
{
total_space = spacing_length;
}
else
{
total_space = spacing_length / new_outer_rad / conversion;
}
spacing = total_space / num_spaces;
available_angle -= total_space;
}
float coords[4];
double current_angle = parentStartAng;
for( i = begin; i < nchildren; i++)
{
int id = tree->GetChild(parent, i);
float cur_size = 1.0;
if (sizeArray)
{
cur_size = static_cast<float>(sizeArray->GetTuple1(id));
}
double this_arc = available_angle *
( cur_size / total_weighted_sum );
coords[2] = new_interior_rad;
coords[3] = new_outer_rad;
coords[0] = current_angle;
coords[1] = current_angle + this_arc;
coordsArray->SetTuple(id, coords);
current_angle += this_arc + spacing;
vtkIdType numNewChildren = tree->GetNumberOfChildren(id);
if (numNewChildren > 0)
{
this->LayoutChildren(tree, coordsArray, sizeArray, numNewChildren, id, 0,
coords[2], coords[3], coords[0], coords[1]);
}
}
}
vtkIdType vtkStackedTreeLayoutStrategy::FindVertex(
vtkTree* otree,
vtkDataArray* array,
float pnt[2])
{
if (this->UseRectangularCoordinates)
{
float blimits[4];
vtkIdType vertex = otree->GetRoot();
if(vertex < 0)
{
return vertex;
}
vtkFloatArray *boundsInfo = vtkFloatArray::SafeDownCast(array);
// Now try to find the vertex that contains the point
boundsInfo->GetTupleValue(vertex, blimits); // Get the extents of the root
if( ((pnt[1] > blimits[2]) && (pnt[1] < blimits[3])) &&
((pnt[0] > blimits[0]) && (pnt[0] < blimits[1])) )
{
// Point is at the root vertex.
return vertex;
}
// Now traverse the children to try and find
// the vertex that contains the point
vtkIdType child;
VTK_CREATE(vtkTreeDFSIterator, it);
it->SetTree( otree );
it->SetStartVertex( vertex );
while (it->HasNext())
{
child = it->Next();
boundsInfo->GetTupleValue(child, blimits); // Get the extents of the child
bool beyond_radial_bounds = false;
bool beyond_angle_bounds = false;
if( (pnt[1] < blimits[2]) || (pnt[1] > blimits[3]))
beyond_radial_bounds = true;
if( (pnt[0] < blimits[0]) || (pnt[0] > blimits[1]))
beyond_angle_bounds = true;
if( beyond_radial_bounds || beyond_angle_bounds )
{
continue;
}
// If we are here then the point is contained by the child
return child;
}
}
else
{
// Radial layout
float polar_location[2];
polar_location[0] = sqrt( ( pnt[0] * pnt[0] ) + ( pnt[1] * pnt[1] ) );
polar_location[1] = vtkMath::DegreesFromRadians( atan2( pnt[1], pnt[0] ) );
if( polar_location[1] < 0 )
polar_location[1] += 360.;
float blimits[4];
vtkIdType vertex = otree->GetRoot();
if(vertex < 0)
{
return vertex;
}
vtkFloatArray *boundsInfo = vtkFloatArray::SafeDownCast(array);
// Now try to find the vertex that contains the point
boundsInfo->GetTupleValue(vertex, blimits); // Get the extents of the root
if( ((polar_location[0] > blimits[2]) && (polar_location[0] < blimits[3])) &&
((polar_location[1] > blimits[0]) && (polar_location[1] < blimits[1])) )
{
// Point is at the root vertex.
// but we don't want the root to be pickable, so return -1.
// This won't work for blimits spanning the 0/360 rollover, but the test below
// catches that case.
return -1;
}
// Now traverse the children to try and find
// the vertex that contains the point
vtkIdType child;
VTK_CREATE(vtkTreeDFSIterator, it);
it->SetTree( otree );
it->SetStartVertex( vertex );
while (it->HasNext())
{
child = it->Next();
// if the root boundary starts anywhere but zero, the root node will have passed
// the earlier test. This will skip the root and prevent it from being picked.
if (child == vertex)
{
continue;
}
boundsInfo->GetTupleValue(child, blimits); // Get the extents of the child
// the range checking below doesn't work if either or both of blimits > 360
if ((blimits[0] > 360.0) && (blimits[1] > 360.0))
{
blimits[0] -= 360.0;
blimits[1] -= 360.0;
}
else if ((blimits[0] < 360.0) && (blimits[1] > 360.0) && (polar_location[1] < 360.0))
{ // if the range spans the rollover at 0/360 on the circle
if (polar_location[1] < 90.0)
{
blimits[0] = 0.0;
blimits[1] -= 360.0;
}
else if (polar_location[1] > 270.)
{
blimits[1] = 360.0;
}
}
bool beyond_radial_bounds = false;
bool beyond_angle_bounds = false;
if( (polar_location[0] < blimits[2]) || (polar_location[0] > blimits[3]))
beyond_radial_bounds = true;
if( (polar_location[1] < blimits[0]) || (polar_location[1] > blimits[1]))
beyond_angle_bounds = true;
if( beyond_radial_bounds || beyond_angle_bounds )
{
continue;
}
// If we are here then the point is contained by the child
return child;
}
}
return -1;
}
|