File: vtkMapper.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (916 lines) | stat: -rw-r--r-- 27,147 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkMapper.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkMapper.h"

#include "vtkAbstractArray.h"
#include "vtkColorSeries.h"
#include "vtkDataArray.h"
#include "vtkDataSet.h"
#include "vtkDoubleArray.h"
#include "vtkDoubleArray.h"
#include "vtkExecutive.h"
#include "vtkFloatArray.h"
#include "vtkImageData.h"
#include "vtkLookupTable.h"
#include "vtkMath.h"
#include "vtkPointData.h"
#include "vtkVariantArray.h"


// Initialize static member that controls global immediate mode rendering
static int vtkMapperGlobalImmediateModeRendering = 0;

// Initialize static member that controls global coincidence resolution
static int vtkMapperGlobalResolveCoincidentTopology = VTK_RESOLVE_OFF;
static double vtkMapperGlobalResolveCoincidentTopologyZShift = 0.01;
static double vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor = 1.0;
static double vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits = 1.0;
static int vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFaces = 1;

// Construct with initial range (0,1).
vtkMapper::vtkMapper()
{
  this->Colors = 0;
  this->Static = 0;
  this->LookupTable = 0;

  this->ScalarVisibility = 1;
  this->ScalarRange[0] = 0.0; this->ScalarRange[1] = 1.0;
  this->UseLookupTableScalarRange = 0;

  this->ImmediateModeRendering = 0;

  this->ColorMode = VTK_COLOR_MODE_DEFAULT;
  this->ScalarMode = VTK_SCALAR_MODE_DEFAULT;
  this->ScalarMaterialMode = VTK_MATERIALMODE_DEFAULT;

  vtkMath::UninitializeBounds(this->Bounds);
  this->Center[0] = this->Center[1] = this->Center[2] = 0.0;

  this->RenderTime = 0.0;

  strcpy(this->ArrayName, "");
  this->ArrayId = -1;
  this->ArrayComponent = 0;
  this->ArrayAccessMode = VTK_GET_ARRAY_BY_ID;

  this->FieldDataTupleId = -1;

  this->InterpolateScalarsBeforeMapping = 0;
  this->ColorCoordinates = 0;
  this->ColorTextureMap = 0;

  this->ForceCompileOnly=0;
}

vtkMapper::~vtkMapper()
{
  if (this->LookupTable)
    {
    this->LookupTable->UnRegister(this);
    }
  if ( this->Colors != 0 )
    {
    this->Colors->UnRegister(this);
    }
  if ( this->ColorCoordinates != 0 )
    {
    this->ColorCoordinates->UnRegister(this);
    }
  if ( this->ColorTextureMap != 0 )
    {
    this->ColorTextureMap->UnRegister(this);
    }
}

// Get the bounds for the input of this mapper as
// (Xmin,Xmax,Ymin,Ymax,Zmin,Zmax).
double *vtkMapper::GetBounds()
{
  vtkDataSet *input = this->GetInput();
  if ( ! input )
    {
      vtkMath::UninitializeBounds(this->Bounds);
    }
  else
    {
    if (!this->Static)
      {
      this->Update();
      }
    input->GetBounds(this->Bounds);
    }
  return this->Bounds;
}

vtkDataSet *vtkMapper::GetInput()
{
  if (this->GetNumberOfInputConnections(0) < 1)
    {
    return 0;
    }
  return vtkDataSet::SafeDownCast(
    this->GetExecutive()->GetInputData(0, 0));
}

void vtkMapper::SetForceCompileOnly(int value)
{
  if(this->ForceCompileOnly!=value)
    {
      this->ForceCompileOnly=value;
      // make sure we don't call this->Modified();
      //      this->Modified();
    }
}

void vtkMapper::SetGlobalImmediateModeRendering(int val)
{
  if (val == vtkMapperGlobalImmediateModeRendering)
    {
    return;
    }
  vtkMapperGlobalImmediateModeRendering = val;
}

int vtkMapper::GetGlobalImmediateModeRendering()
{
  return vtkMapperGlobalImmediateModeRendering;
}

void vtkMapper::SetResolveCoincidentTopology(int val)
{
  if (val == vtkMapperGlobalResolveCoincidentTopology)
    {
    return;
    }
  vtkMapperGlobalResolveCoincidentTopology = val;
}

int vtkMapper::GetResolveCoincidentTopology()
{
  return vtkMapperGlobalResolveCoincidentTopology;
}

void vtkMapper::SetResolveCoincidentTopologyToDefault()
{
  vtkMapperGlobalResolveCoincidentTopology = VTK_RESOLVE_OFF;
}

void vtkMapper::SetResolveCoincidentTopologyZShift(double val)
{
  if (val == vtkMapperGlobalResolveCoincidentTopologyZShift)
    {
    return;
    }
  vtkMapperGlobalResolveCoincidentTopologyZShift = val;
}

double vtkMapper::GetResolveCoincidentTopologyZShift()
{
  return vtkMapperGlobalResolveCoincidentTopologyZShift;
}

void vtkMapper::SetResolveCoincidentTopologyPolygonOffsetParameters(
                                            double factor, double units)
{
  if (factor == vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor &&
      units == vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits )
    {
    return;
    }
  vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor = factor;
  vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits = units;
}

void vtkMapper::GetResolveCoincidentTopologyPolygonOffsetParameters(
                           double& factor, double& units)
{
  factor = vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor;
  units = vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits;
}

void vtkMapper::SetResolveCoincidentTopologyPolygonOffsetFaces(int faces)
{
  vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFaces = faces;
}

int vtkMapper::GetResolveCoincidentTopologyPolygonOffsetFaces()
{
  return vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFaces;
}

// Overload standard modified time function. If lookup table is modified,
// then this object is modified as well.
unsigned long vtkMapper::GetMTime()
{
  //unsigned long mTime=this->MTime.GetMTime();
  unsigned long mTime=vtkAbstractMapper::GetMTime();
  unsigned long lutMTime;

  if ( this->LookupTable != NULL )
    {
    lutMTime = this->LookupTable->GetMTime();
    mTime = ( lutMTime > mTime ? lutMTime : mTime );
    }

  return mTime;
}

void vtkMapper::ShallowCopy(vtkAbstractMapper *mapper)
{
  vtkMapper *m = vtkMapper::SafeDownCast(mapper);
  if ( m != NULL )
    {
    this->SetLookupTable(m->GetLookupTable());
    this->SetScalarVisibility(m->GetScalarVisibility());
    this->SetScalarRange(m->GetScalarRange());
    this->SetColorMode(m->GetColorMode());
    this->SetScalarMode(m->GetScalarMode());
    this->SetScalarMaterialMode(m->GetScalarMaterialMode());
    this->SetImmediateModeRendering(m->GetImmediateModeRendering());
    this->SetUseLookupTableScalarRange(m->GetUseLookupTableScalarRange());
    this->SetInterpolateScalarsBeforeMapping(
      m->GetInterpolateScalarsBeforeMapping());

    if ( m->GetArrayAccessMode() == VTK_GET_ARRAY_BY_ID )
      {
      this->ColorByArrayComponent(m->GetArrayId(),m->GetArrayComponent());
      }
    else
      {
      this->ColorByArrayComponent(m->GetArrayName(),m->GetArrayComponent());
      }
    }

  // Now do superclass
  this->vtkAbstractMapper3D::ShallowCopy(mapper);

}

// a side effect of this is that this->Colors is also set
// to the return value
vtkUnsignedCharArray *vtkMapper::MapScalars(double alpha)
{
  vtkDataSet *input = this->GetInput();
  return this->MapScalars(input,alpha);
}

//-----------------------------------------------------------------------------
// Returns if we can use texture maps for scalar coloring. Note this doesn't say
// we "will" use scalar coloring. It says, if we do use scalar coloring, we will
// use a texture.
// When rendering multiblock datasets, if any 2 blocks provide different
// lookup tables for the scalars, then also we cannot use textures. This case can
// be handled if required.
int vtkMapper::CanUseTextureMapForColoring(vtkDataObject* input)
{
  if (!this->InterpolateScalarsBeforeMapping)
    {
    return 0; // user doesn't want us to use texture maps at all.
    }

  if (input->IsA("vtkDataSet"))
    {
    int cellFlag=0;
    vtkDataSet* ds = static_cast<vtkDataSet*>(input);
    vtkDataArray* scalars = vtkAbstractMapper::GetScalars(ds,
      this->ScalarMode, this->ArrayAccessMode, this->ArrayId,
      this->ArrayName, cellFlag);

    if (!scalars)
      {
      // no scalars on  this dataset, we don't care if texture is used at all.
      return 1;
      }

    if (cellFlag)
      {
      return 0; // cell data colors, don't use textures.
      }

    if ((this->ColorMode == VTK_COLOR_MODE_DEFAULT &&
         vtkUnsignedCharArray::SafeDownCast(scalars)) ||
        this->ColorMode == VTK_COLOR_MODE_DIRECT_SCALARS)
      {
      // Don't use texture is direct coloring using RGB unsigned chars is
      // requested.
      return 0;
      }
    }

  if (this->LookupTable &&
      this->LookupTable->GetIndexedLookup())
    {
    return 0;
    }

  return 1;
}

// a side effect of this is that this->Colors is also set
// to the return value
vtkUnsignedCharArray *vtkMapper::MapScalars(vtkDataSet *input,
                                            double alpha)
{
  int cellFlag = 0;

  vtkAbstractArray *scalars = vtkAbstractMapper::
    GetAbstractScalars(input, this->ScalarMode, this->ArrayAccessMode,
                       this->ArrayId, this->ArrayName, cellFlag);

  // This is for a legacy feature: selection of the array component to color by
  // from the mapper.  It is now in the lookuptable.  When this feature
  // is removed, we can remove this condition.
  if (scalars == 0 || scalars->GetNumberOfComponents() <= this->ArrayComponent)
    {
    this->ArrayComponent = 0;
    }

  if ( !this->ScalarVisibility || scalars==0 || input==0)
    { // No scalar colors.
    if ( this->ColorCoordinates )
      {
      this->ColorCoordinates->UnRegister(this);
      this->ColorCoordinates = 0;
      }
    if ( this->ColorTextureMap )
      {
      this->ColorTextureMap->UnRegister(this);
      this->ColorTextureMap = 0;
      }
    if ( this->Colors )
      {
      this->Colors->UnRegister(this);
      this->Colors = 0;
      }
    return 0;
    }

  // Get the lookup table.
  vtkDataArray *dataArray = vtkDataArray::SafeDownCast(scalars);
  if (dataArray && dataArray->GetLookupTable())
    {
    this->SetLookupTable(dataArray->GetLookupTable());
    }
  else
    {
    // make sure we have a lookup table
    if ( this->LookupTable == 0 )
      {
      this->CreateDefaultLookupTable();
      }
    this->LookupTable->Build();
    }

  if ( !this->UseLookupTableScalarRange )
    {
    this->LookupTable->SetRange(this->ScalarRange);
    }

  // Decide betweeen texture color or vertex color.
  // Cell data always uses vertext color.
  // Only point data can use both texture and vertext coloring.
  if (this->CanUseTextureMapForColoring(input))
    {
    this->MapScalarsToTexture(scalars, alpha);
    return 0;
    }

  // Vertex colors are being used.
  // Get rid of texure Color arrays.  Only texture or vertex coloring
  // can be active at one time.  The existence of the array is the
  // signal to use that technique.
  if ( this->ColorCoordinates )
    {
    this->ColorCoordinates->UnRegister(this);
    this->ColorCoordinates = 0;
    }
  if ( this->ColorTextureMap )
    {
    this->ColorTextureMap->UnRegister(this);
    this->ColorTextureMap = 0;
    }

  // Lets try to resuse the old colors.
  if (this->Colors)
    {
    if (this->LookupTable && this->LookupTable->GetAlpha() == alpha)
      {
      if (this->GetMTime() < this->Colors->GetMTime() &&
          input->GetMTime() < this->Colors->GetMTime() &&
          this->LookupTable->GetMTime() < this->Colors->GetMTime())
        {
        return this->Colors;
        }
      }
    }

  // Get rid of old colors
  if ( this->Colors )
    {
    this->Colors->UnRegister(this);
    this->Colors = 0;
    }

  // map scalars
  double orig_alpha = this->LookupTable->GetAlpha();
  this->LookupTable->SetAlpha(alpha);
  this->Colors = this->LookupTable->
    MapScalars(scalars, this->ColorMode, this->ArrayComponent);
  this->LookupTable->SetAlpha(orig_alpha);
  // Consistent register and unregisters
  this->Colors->Register(this);
  this->Colors->Delete();

  return this->Colors;
}


void vtkMapper::SelectColorArray(int arrayNum)
{
  this->ColorByArrayComponent(arrayNum, -1);
}


void vtkMapper::SelectColorArray(const char* arrayName)
{
  this->ColorByArrayComponent(arrayName, -1);
}


void vtkMapper::ColorByArrayComponent(int arrayNum, int component)
{
  if (this->ArrayId == arrayNum && component == this->ArrayComponent &&
      this->ArrayAccessMode == VTK_GET_ARRAY_BY_ID)
    {
    return;
    }
  this->Modified();

  this->ArrayId = arrayNum;
  this->ArrayComponent = component;
  this->ArrayAccessMode = VTK_GET_ARRAY_BY_ID;
}

void vtkMapper::ColorByArrayComponent(const char* arrayName, int component)
{
  if (!arrayName ||
      ( strcmp(this->ArrayName, arrayName) == 0 &&
        component == this->ArrayComponent &&
        this->ArrayAccessMode == VTK_GET_ARRAY_BY_NAME ))
    {
    return;
    }
  this->Modified();

  strcpy(this->ArrayName, arrayName);
  this->ArrayComponent = component;
  this->ArrayAccessMode = VTK_GET_ARRAY_BY_NAME;
}

// Specify a lookup table for the mapper to use.
void vtkMapper::SetLookupTable(vtkScalarsToColors *lut)
{
  if ( this->LookupTable != lut )
    {
    if ( this->LookupTable)
      {
      this->LookupTable->UnRegister(this);
      }
    this->LookupTable = lut;
    if (lut)
      {
      lut->Register(this);
      }
    this->Modified();
    }
}

vtkScalarsToColors *vtkMapper::GetLookupTable()
{
  if ( this->LookupTable == 0 )
    {
    this->CreateDefaultLookupTable();
    }
  return this->LookupTable;
}

void vtkMapper::CreateDefaultLookupTable()
{
  if ( this->LookupTable)
    {
    this->LookupTable->UnRegister(this);
    }
  vtkLookupTable* table = vtkLookupTable::New();
  this->LookupTable = table;
  this->LookupTable->Register(this);
  this->LookupTable->Delete();

  int cellFlag = 0; // not used
  vtkAbstractArray* abstractArray = vtkAbstractMapper::
    GetAbstractScalars(this->GetInput(), this->ScalarMode, this->ArrayAccessMode,
                       this->ArrayId, this->ArrayName, cellFlag);

  vtkDataArray *dataArray = vtkDataArray::SafeDownCast(abstractArray);
  if (abstractArray && !dataArray)
    {
    // Use indexed lookup for non-numeric arrays
    this->LookupTable->IndexedLookupOn();

    // Get prominent values from array and set them up as annotations in the color map.
    vtkVariantArray* prominentValues = vtkVariantArray::New();
    abstractArray->GetProminentComponentValues(0, prominentValues);
    vtkIdType numProminentValues = prominentValues->GetNumberOfValues();
    table->SetNumberOfTableValues(numProminentValues);
    for (vtkIdType i = 0; i < numProminentValues; ++i)
      {
      vtkVariant & variant = prominentValues->GetValue(i);
      this->LookupTable->SetAnnotation(variant, variant.ToString());
      }
    prominentValues->Delete();

    // Set colors for annotations
    vtkColorSeries* colorSeries = vtkColorSeries::New();
    colorSeries->SetColorScheme(vtkColorSeries::BREWER_QUALITATIVE_PAIRED);
    colorSeries->BuildLookupTable(table, vtkColorSeries::CATEGORICAL);
    colorSeries->Delete();
    }
}

// Return the method of coloring scalar data.
const char *vtkMapper::GetColorModeAsString(void)
{
  if ( this->ColorMode == VTK_COLOR_MODE_MAP_SCALARS )
    {
    return "MapScalars";
    }
  else
    {
    return "Default";
    }
}

// Return the method for obtaining scalar data.
const char *vtkMapper::GetScalarModeAsString(void)
{
  if ( this->ScalarMode == VTK_SCALAR_MODE_USE_CELL_DATA )
    {
    return "UseCellData";
    }
  else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_POINT_DATA )
    {
    return "UsePointData";
    }
  else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_POINT_FIELD_DATA )
    {
    return "UsePointFieldData";
    }
  else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_CELL_FIELD_DATA )
    {
    return "UseCellFieldData";
    }
  else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_FIELD_DATA )
    {
    return "UseFieldData";
    }
  else
    {
    return "Default";
    }
}

const char *vtkMapper::GetScalarMaterialModeAsString(void)
{
  if ( this->ScalarMaterialMode == VTK_MATERIALMODE_AMBIENT )
    {
    return "Ambient";
    }
  else if ( this->ScalarMaterialMode == VTK_MATERIALMODE_DIFFUSE )
    {
    return "Diffuse";
    }
  else if ( this->ScalarMaterialMode == VTK_MATERIALMODE_AMBIENT_AND_DIFFUSE )
    {
    return "Ambient and Diffuse";
    }
  else
    {
    return "Default";
    }
}

// anonymous namespace
namespace {

//-----------------------------------------------------------------------------
template<class T>
void ScalarToTextureCoordinate(
                               T scalar_value,         // Input scalar
                               double range_min,       // range[0]
                               double inv_range_width, // 1/(range[1]-range[0])
                               float &tex_coord_s,     // 1st tex coord
                               float &tex_coord_t)     // 2nd tex coord
{
  if (vtkMath::IsNan(scalar_value))
    {
    tex_coord_s = 0.5;  // Scalar value is arbitrary when NaN
    tex_coord_t = 1.0;  // 1.0 in t coordinate means NaN
    }
  else
    {
    // 0.0 in t coordinate means not NaN.  So why am I setting it to 0.49?
    // Because when you are mapping scalars and you have a NaN adjacent to
    // anything else, the interpolation everywhere should be NaN.  Thus, I
    // want the NaN color everywhere except right on the non-NaN neighbors.
    // To simulate this, I set the t coord for the real numbers close to
    // the threshold so that the interpolation almost immediately looks up
    // the NaN value.
    tex_coord_t = 0.49;

    double ranged_scalar = (scalar_value - range_min) * inv_range_width;
    tex_coord_s = static_cast<float>(ranged_scalar);
    }

    // Some implementations apparently don't handle relatively large
    // numbers (compared to the range [0.0, 1.0]) very well. In fact,
    // values above 1122.0f appear to cause texture wrap-around on
    // some systems even when edge clamping is enabled. Why 1122.0f? I
    // don't know. For safety, we'll clamp at +/- 1000. This will
    // result in incorrect images when the texture value should be
    // above or below 1000, but I don't have a better solution.
    if (tex_coord_s > 1000.0f)
      {
      tex_coord_s = 1000.0f;
      }
    else if (tex_coord_s < -1000.0f)
      {
      tex_coord_s = -1000.0f;
      }
}

//-----------------------------------------------------------------------------
template<class T>
void CreateColorTextureCoordinates(T* input, float* output,
                                   vtkIdType numScalars, int numComps,
                                   int component, double* range,
                                   const double* table_range,
                                   int tableNumberOfColors,
                                   bool use_log_scale)
{
  // We have to change the range used for computing texture
  // coordinates slightly to accomodate the special above- and
  // below-range colors that are the first and last texels,
  // respectively.
  double scalar_texel_width = (range[1] - range[0]) / static_cast<double>(tableNumberOfColors);
  double padded_range[2];
  padded_range[0] = range[0] - scalar_texel_width;
  padded_range[1] = range[1] + scalar_texel_width;
  double inv_range_width = 1.0 / (padded_range[1] - padded_range[0]);

  if (component < 0 || component >= numComps)
    {
    for (vtkIdType scalarIdx = 0; scalarIdx < numScalars; ++scalarIdx)
      {
      double sum = 0;
      for (int compIdx = 0; compIdx < numComps; ++compIdx)
        {
        double tmp = static_cast<double>(*input);
        sum += (tmp * tmp);
        ++input;
        }
      double magnitude = sqrt(sum);
      if (use_log_scale)
        {
        magnitude = vtkLookupTable::ApplyLogScale(
          magnitude, table_range, range);
        }
      ScalarToTextureCoordinate(magnitude, padded_range[0], inv_range_width,
                                output[0], output[1]);
      output += 2;
      }
    }
  else
    {
    input += component;
    for (vtkIdType scalarIdx = 0; scalarIdx < numScalars; ++scalarIdx)
      {
      double input_value = static_cast<double>(*input);
      if (use_log_scale)
        {
        input_value = vtkLookupTable::ApplyLogScale(
          input_value, table_range, range);
        }
      ScalarToTextureCoordinate(input_value, padded_range[0], inv_range_width,
                                output[0], output[1]);
      output += 2;
      input = input + numComps;
      }
    }
}

} // end anonymous namespace

// a side effect of this is that this->ColorCoordinates and
// this->ColorTexture are set.
void vtkMapper::MapScalarsToTexture(vtkAbstractArray* scalars, double alpha)
{
  double range[2];
  range[0] = this->LookupTable->GetRange()[0];
  range[1] = this->LookupTable->GetRange()[1];
  bool use_log_scale = (this->LookupTable->UsingLogScale() != 0);
  if (use_log_scale)
    {
    // convert range to log.
    vtkLookupTable::GetLogRange(range, range);
    }

  double orig_alpha = this->LookupTable->GetAlpha();

  // Get rid of vertex color array.  Only texture or vertex coloring
  // can be active at one time.  The existence of the array is the
  // signal to use that technique.
  if ( this->Colors )
    {
    this->Colors->UnRegister(this);
    this->Colors = 0;
    }

  // If the lookup table has changed, the recreate the color texture map.
  // Set a new lookup table changes this->MTime.
  if (this->ColorTextureMap == 0 ||
      this->GetMTime() > this->ColorTextureMap->GetMTime() ||
      this->LookupTable->GetMTime() > this->ColorTextureMap->GetMTime() ||
      this->LookupTable->GetAlpha() != alpha)
    {
    this->LookupTable->SetAlpha(alpha);
    if ( this->ColorTextureMap )
      {
      this->ColorTextureMap->UnRegister(this);
      this->ColorTextureMap = 0;
      }
    // Get the texture map from the lookup table.
    // Create a dummy ramp of scalars.
    // In the future, we could extend vtkScalarsToColors.
    vtkIdType numberOfColors = this->LookupTable->GetNumberOfAvailableColors();
    numberOfColors += 2;
    double k = (range[1]-range[0]) / (numberOfColors-1-2);
    vtkDoubleArray* tmp = vtkDoubleArray::New();
    tmp->SetNumberOfTuples(numberOfColors*2);
    double* ptr = tmp->GetPointer(0);
    for (int i = 0; i < numberOfColors; ++i)
      {
      *ptr = range[0] + i * k - k; // minus k to start at below range color
      if (use_log_scale)
        {
        *ptr = pow(10.0, *ptr);
        }
      ++ptr;
      }
    // Dimension on NaN.
    double nan = vtkMath::Nan();
    for (int i = 0; i < numberOfColors; ++i)
      {
      *ptr = nan;
      ++ptr;
      }
    this->ColorTextureMap = vtkImageData::New();
    this->ColorTextureMap->SetExtent(0,numberOfColors-1,
                                     0,1, 0,0);
    this->ColorTextureMap->GetPointData()->SetScalars(
         this->LookupTable->MapScalars(tmp, this->ColorMode, 0));
    this->LookupTable->SetAlpha(orig_alpha);
    // Do we need to delete the scalars?
    this->ColorTextureMap->GetPointData()->GetScalars()->Delete();
    // Consistent register and unregisters
    this->ColorTextureMap->Register(this);
    this->ColorTextureMap->Delete();
    tmp->Delete();
    }

  // Create new coordinates if necessary.
  // Need to compare lookup table incase the range has changed.
  if (this->ColorCoordinates == 0 ||
      this->GetMTime() > this->ColorCoordinates->GetMTime() ||
      this->GetExecutive()->GetInputData(0, 0)->GetMTime() >
      this->ColorCoordinates->GetMTime() ||
      this->LookupTable->GetMTime() > this->ColorCoordinates->GetMTime())
    {
    // Get rid of old colors
    if ( this->ColorCoordinates )
      {
      this->ColorCoordinates->UnRegister(this);
      this->ColorCoordinates = 0;
      }

    // Now create the color texture coordinates.
    int numComps = scalars->GetNumberOfComponents();
    void* input = scalars->GetVoidPointer(0);
    vtkIdType num = scalars->GetNumberOfTuples();
    this->ColorCoordinates = vtkFloatArray::New();
    this->ColorCoordinates->SetNumberOfComponents(2);
    this->ColorCoordinates->SetNumberOfTuples(num);
    float* output = this->ColorCoordinates->GetPointer(0);
    int scalarComponent;
    // Although I like the feature of applying magnitude to single component
    // scalars, it is not how the old MapScalars for vertex coloring works.
    if (this->LookupTable->GetVectorMode() == vtkScalarsToColors::MAGNITUDE &&
        scalars->GetNumberOfComponents() > 1)
      {
      scalarComponent = -1;
      }
    else
      {
      scalarComponent = this->LookupTable->GetVectorComponent();
      }
    switch (scalars->GetDataType())
      {
      vtkTemplateMacro(
        CreateColorTextureCoordinates(static_cast<VTK_TT*>(input),
          output, num, numComps,
          scalarComponent, range,
          this->LookupTable->GetRange(),
          this->LookupTable->GetNumberOfAvailableColors(),
          use_log_scale)
        );
      case VTK_BIT:
        vtkErrorMacro("Cannot color by bit array.");
        break;
      default:
        vtkErrorMacro(<< "Unknown input ScalarType");
        return;
      }
    }
}

void vtkMapper::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  if ( this->LookupTable )
    {
    os << indent << "Lookup Table:\n";
    this->LookupTable->PrintSelf(os,indent.GetNextIndent());
    }
  else
    {
    os << indent << "Lookup Table: (none)\n";
    }

  os << indent << "Immediate Mode Rendering: "
    << (this->ImmediateModeRendering ? "On\n" : "Off\n");

   os << indent << "Force compile only for display lists: "
    << (this->ForceCompileOnly ? "On\n" : "Off\n");

  os << indent << "Global Immediate Mode Rendering: " <<
    (vtkMapperGlobalImmediateModeRendering ? "On\n" : "Off\n");

  os << indent << "Scalar Visibility: "
    << (this->ScalarVisibility ? "On\n" : "Off\n");

  os << indent << "Static: "
    << (this->Static ? "On\n" : "Off\n");

  double *range = this->GetScalarRange();
  os << indent << "Scalar Range: (" << range[0] << ", " << range[1] << ")\n";

  os << indent << "UseLookupTableScalarRange: "
     << this->UseLookupTableScalarRange << "\n";

  os << indent << "Color Mode: " << this->GetColorModeAsString() << endl;
  os << indent << "InterpolateScalarsBeforeMapping: "
     << (this->InterpolateScalarsBeforeMapping ? "On\n" : "Off\n");

  os << indent << "Scalar Mode: " << this->GetScalarModeAsString() << endl;

  os << indent << "LM Color Mode: "
     << this->GetScalarMaterialModeAsString() << endl;

  os << indent << "RenderTime: " << this->RenderTime << endl;

  os << indent << "Resolve Coincident Topology: ";
  if ( vtkMapperGlobalResolveCoincidentTopology == VTK_RESOLVE_OFF )
    {
    os << "Off" << endl;
    }
  else if ( vtkMapperGlobalResolveCoincidentTopology == VTK_RESOLVE_POLYGON_OFFSET )
    {
    os << "Polygon Offset" << endl;
    }
  else
    {
    os << "Shift Z-Buffer" << endl;
    }
}