1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkFixedPointVolumeRayCastCompositeHelper.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) 1993-2002 Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkFixedPointVolumeRayCastCompositeHelper.h"
#include "vtkImageData.h"
#include "vtkCommand.h"
#include "vtkFixedPointVolumeRayCastMapper.h"
#include "vtkObjectFactory.h"
#include "vtkRenderWindow.h"
#include "vtkVolume.h"
#include "vtkVolumeProperty.h"
#include "vtkFixedPointRayCastImage.h"
#include "vtkDataArray.h"
#include <math.h>
vtkStandardNewMacro(vtkFixedPointVolumeRayCastCompositeHelper);
// Construct a new vtkFixedPointVolumeRayCastCompositeHelper with default values
vtkFixedPointVolumeRayCastCompositeHelper::vtkFixedPointVolumeRayCastCompositeHelper()
{
}
// Destruct a vtkFixedPointVolumeRayCastCompositeHelper - clean up any memory used
vtkFixedPointVolumeRayCastCompositeHelper::~vtkFixedPointVolumeRayCastCompositeHelper()
{
}
// This method is used when the interpolation type is nearest neighbor and
// the data has one component and scale == 1.0 and shift == 0.0. In the inner
// loop we get the data value as an unsigned short, and use this index to
// lookup a color and opacity for this sample. We then composite this into
// the color computed so far along the ray, and check if we can terminate at
// this point (if the accumulated opacity is higher than some threshold).
// Finally we move on to the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageOneSimpleNN( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartNN();
VTKKWRCHelper_InitializeCompositeOneNN();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
VTKKWRCHelper_MoveToNextSampleNN();
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckNN( pos );
unsigned short val = static_cast<unsigned short>(((*dptr)));
VTKKWRCHelper_LookupColorUS( colorTable[0], scalarOpacityTable[0], val, tmp );
if ( tmp[3] )
{
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is nearest neighbor and
// the data has one component. In the inner loop we get the data value as
// an unsigned short using the scale/shift, and use this index to lookup
// a color and opacity for this sample. We then composite this into the
// color computed so far along the ray, and check if we can terminate at
// this point (if the accumulated opacity is higher than some threshold).
// Finally we move on to the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageOneNN( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartNN();
VTKKWRCHelper_InitializeCompositeOneNN();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
VTKKWRCHelper_MoveToNextSampleNN();
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckNN( pos );
unsigned short val = static_cast<unsigned short>(((*dptr) + shift[0])*scale[0]);
VTKKWRCHelper_LookupColorUS( colorTable[0], scalarOpacityTable[0], val, tmp );
if ( tmp[3] )
{
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is nearest neighbor and
// the data has two components which are not considered independent. In the
// inner loop we compute the two unsigned short index values from the data
// values (using the scale/shift). We use the first index to lookup a color,
// and we use the second index to look up the opacity. We then composite
// the color into the color computed so far along this ray, and check to
// see if we can terminate here (if the opacity accumulated exceed some
// threshold). Finally we move to the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageTwoDependentNN( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartNN();
VTKKWRCHelper_InitializeCompositeOneNN();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
VTKKWRCHelper_MoveToNextSampleNN();
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckNN( pos );
unsigned short val[2];
val[1] = static_cast<unsigned short>(((*(dptr+1)) + shift[1])*scale[1]);
tmp[3] = scalarOpacityTable[0][val[1]];
if ( !tmp[3] )
{
continue;
}
val[0] = static_cast<unsigned short>(((*(dptr )) + shift[0])*scale[0]);
tmp[0] = static_cast<unsigned short>
((colorTable[0][3*val[0] ]*tmp[3] + 0x7fff)>>(VTKKW_FP_SHIFT));
tmp[1] = static_cast<unsigned short>
((colorTable[0][3*val[0]+1]*tmp[3] + 0x7fff)>>(VTKKW_FP_SHIFT));
tmp[2] = static_cast<unsigned short>
((colorTable[0][3*val[0]+2]*tmp[3] + 0x7fff)>>(VTKKW_FP_SHIFT));
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is nearest neighbor and
// the data has four components which are not considered independent . This
// means that the first three components directly represent color, and this
// data must be of unsigned char type. In the inner loop we directly access
// the four data values (no scale/shift is needed). The first three are the
// color of this sample and the fourth is used to look up an opacity in the
// scalar opacity transfer function. We then composite this color into the
// color we have accumulated so far along the ray, and check if we can
// terminate here (if our accumulated opacity has exceed some threshold).
// Finally we move onto the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageFourDependentNN( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartNN();
VTKKWRCHelper_InitializeCompositeOneNN();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
VTKKWRCHelper_MoveToNextSampleNN();
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckNN( pos );
unsigned short val[4];
val[3] = static_cast<unsigned short>(((*(dptr+3)) + shift[3])*scale[3]);
tmp[3] = scalarOpacityTable[0][val[3]];
if ( !tmp[3] )
{
continue;
}
val[0] = *(dptr );
val[1] = *(dptr+1);
val[2] = *(dptr+2);
tmp[0] = (val[0]*tmp[3]+0x7f)>>(8);
tmp[1] = (val[1]*tmp[3]+0x7f)>>(8);
tmp[2] = (val[2]*tmp[3]+0x7f)>>(8);
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is nearest neighbor and
// the data has more than one component and the components are considered to
// be independent. In the inner loop we access each component value, using
// the scale/shift to turn the data value into an unsigned short index. We
// then lookup the color/opacity for each component and combine them according
// to the weighting value for each component. We composite this resulting
// color into the color already accumulated for this ray, and we check
// wether we can terminate here (if the accumulated opacity exceeds some
// threshold). Finally we increment to the next sample on the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageIndependentNN( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vol)
{
VTKKWRCHelper_InitializeWeights();
VTKKWRCHelper_InitializationAndLoopStartNN();
VTKKWRCHelper_InitializeCompositeMultiNN();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
VTKKWRCHelper_MoveToNextSampleNN();
}
VTKKWRCHelper_CroppingCheckNN( pos );
for ( c = 0; c < components; c++ )
{
val[c] = static_cast<unsigned short>(((*(dptr+c)) + shift[c])*scale[c]);
}
VTKKWRCHelper_LookupAndCombineIndependentColorsUS( colorTable, scalarOpacityTable,
val, weights, components, tmp );
if ( tmp[3] )
{
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is linear and the data
// has one component and scale = 1.0 and shift = 0.0. In the inner loop we
// get the data value for the eight cell corners (if we have changed cells)
// as an unsigned short (the range must be right and we don't need the
// scale/shift). We compute our weights within the cell according to our
// fractional position within the cell, apply trilinear interpolation to
// compute the index, and use this index to lookup a color and opacity for
// this sample. We then composite this into the color computed so far along
// the ray, and check if we can terminate at this point (if the accumulated
// opacity is higher than some threshold). Finally we move on to the next
// sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageOneSimpleTrilin( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartTrilin();
VTKKWRCHelper_InitializeCompositeOneTrilin();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
mapper->FixedPointIncrement( pos, dir );
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckTrilin( pos );
mapper->ShiftVectorDown( pos, spos );
if ( spos[0] != oldSPos[0] ||
spos[1] != oldSPos[1] ||
spos[2] != oldSPos[2] )
{
oldSPos[0] = spos[0];
oldSPos[1] = spos[1];
oldSPos[2] = spos[2];
dptr = data + spos[0]*inc[0] + spos[1]*inc[1] + spos[2]*inc[2];
VTKKWRCHelper_GetCellScalarValuesSimple( dptr );
}
VTKKWRCHelper_ComputeWeights(pos);
VTKKWRCHelper_InterpolateScalar(val);
VTKKWRCHelper_LookupColorUS( colorTable[0], scalarOpacityTable[0], val, tmp );
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is linear and the data
// has one component and scale != 1.0 or shift != 0.0. In the inner loop we
// get the data value for the eight cell corners (if we have changed cells)
// as an unsigned short (we use the scale/shift to ensure the correct range).
// We compute our weights within the cell according to our fractional position
// within the cell, apply trilinear interpolation to compute the index, and use
// this index to lookup a color and opacity for this sample. We then composite
// this into the color computed so far along the ray, and check if we can
// terminate at this point (if the accumulated opacity is higher than some
// threshold). Finally we move on to the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageOneTrilin( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartTrilin();
VTKKWRCHelper_InitializeCompositeOneTrilin();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
mapper->FixedPointIncrement( pos, dir );
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckTrilin( pos );
mapper->ShiftVectorDown( pos, spos );
if ( spos[0] != oldSPos[0] ||
spos[1] != oldSPos[1] ||
spos[2] != oldSPos[2] )
{
oldSPos[0] = spos[0];
oldSPos[1] = spos[1];
oldSPos[2] = spos[2];
dptr = data + spos[0]*inc[0] + spos[1]*inc[1] + spos[2]*inc[2];
VTKKWRCHelper_GetCellScalarValues( dptr, scale[0], shift[0] );
}
VTKKWRCHelper_ComputeWeights(pos);
VTKKWRCHelper_InterpolateScalar(val);
VTKKWRCHelper_LookupColorUS( colorTable[0], scalarOpacityTable[0], val, tmp );
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is linear, the data has
// two components and the components are not considered independent. In the
// inner loop we get the data value for the eight cell corners (if we have
// changed cells) for both components as an unsigned shorts (we use the
// scale/shift to ensure the correct range). We compute our weights within
// the cell according to our fractional position within the cell, and apply
// trilinear interpolation to compute the two index value. We use the first
// index to lookup a color and the second to look up an opacity for this sample.
// We then composite this into the color computed so far along the ray, and
// check if we can terminate at this point (if the accumulated opacity is
// higher than some threshold). Finally we move on to the next sample along
// the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageTwoDependentTrilin( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartTrilin();
VTKKWRCHelper_InitializeCompositeMultiTrilin();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
mapper->FixedPointIncrement( pos, dir );
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckTrilin( pos );
mapper->ShiftVectorDown( pos, spos );
if ( spos[0] != oldSPos[0] ||
spos[1] != oldSPos[1] ||
spos[2] != oldSPos[2] )
{
oldSPos[0] = spos[0];
oldSPos[1] = spos[1];
oldSPos[2] = spos[2];
dptr = data + spos[0]*inc[0] + spos[1]*inc[1] + spos[2]*inc[2];
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 0, scale[0], shift[0] );
dptr++;
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 1, scale[1], shift[1] );
}
VTKKWRCHelper_ComputeWeights(pos);
VTKKWRCHelper_InterpolateScalarComponent( val, c, 2 );
tmp[3] = scalarOpacityTable[0][val[1]];
if ( !tmp[3] )
{
continue;
}
tmp[0] = static_cast<unsigned short>
((colorTable[0][3*val[0] ]*tmp[3] + 0x7fff)>>(VTKKW_FP_SHIFT));
tmp[1] = static_cast<unsigned short>
((colorTable[0][3*val[0]+1]*tmp[3] + 0x7fff)>>(VTKKW_FP_SHIFT));
tmp[2] = static_cast<unsigned short>
((colorTable[0][3*val[0]+2]*tmp[3] + 0x7fff)>>(VTKKW_FP_SHIFT));
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is linear, the data has
// four components and the components are not considered independent. In the
// inner loop we get the data value for the eight cell corners (if we have
// changed cells) for all components as an unsigned shorts (we don't have to
// use the scale/shift because only unsigned char data is supported for four
// component data when the components are not independent). We compute our
// weights within the cell according to our fractional position within the cell,
// and apply trilinear interpolation to compute a value for each component. We
// use the first three directly as the color of the sample, and the fourth is
// used to look up an opacity for this sample. We then composite this into the
// color computed so far along the ray, and check if we can terminate at this
// point (if the accumulated opacity is higher than some threshold). Finally we
// move on to the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageFourDependentTrilin( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vtkNotUsed(vol))
{
VTKKWRCHelper_InitializationAndLoopStartTrilin();
VTKKWRCHelper_InitializeCompositeMultiTrilin();
VTKKWRCHelper_SpaceLeapSetup();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
mapper->FixedPointIncrement( pos, dir );
}
VTKKWRCHelper_SpaceLeapCheck();
VTKKWRCHelper_CroppingCheckTrilin( pos );
mapper->ShiftVectorDown( pos, spos );
if ( spos[0] != oldSPos[0] ||
spos[1] != oldSPos[1] ||
spos[2] != oldSPos[2] )
{
oldSPos[0] = spos[0];
oldSPos[1] = spos[1];
oldSPos[2] = spos[2];
dptr = data + spos[0]*inc[0] + spos[1]*inc[1] + spos[2]*inc[2];
VTKKWRCHelper_GetCellComponentRawScalarValues( dptr, 0 );
dptr++;
VTKKWRCHelper_GetCellComponentRawScalarValues( dptr, 1 );
dptr++;
VTKKWRCHelper_GetCellComponentRawScalarValues( dptr, 2 );
dptr++;
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 3, scale[3], shift[3] );
}
VTKKWRCHelper_ComputeWeights(pos);
VTKKWRCHelper_InterpolateScalarComponent( val, c, components );
tmp[3] = scalarOpacityTable[0][val[3]];
if ( !tmp[3] )
{
continue;
}
tmp[0] = (val[0]*tmp[3]+0x7f)>>8;
tmp[1] = (val[1]*tmp[3]+0x7f)>>8;
tmp[2] = (val[2]*tmp[3]+0x7f)>>8;
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
// This method is used when the interpolation type is linear, the data has
// more than one component and the components are considered independent. In
// the inner loop we get the data value for the eight cell corners (if we have
// changed cells) for all components as an unsigned shorts (we have to use the
// scale/shift to ensure that we obtained unsigned short indices) We compute our
// weights within the cell according to our fractional position within the cell,
// and apply trilinear interpolation to compute a value for each component. We
// look up a color/opacity for each component and blend them according to the
// component weights. We then composite this resulting color into the
// color computed so far along the ray, and check if we can terminate at this
// point (if the accumulated opacity is higher than some threshold). Finally we
// move on to the next sample along the ray.
template <class T>
void vtkFixedPointCompositeHelperGenerateImageIndependentTrilin( T *data,
int threadID,
int threadCount,
vtkFixedPointVolumeRayCastMapper *mapper,
vtkVolume *vol)
{
VTKKWRCHelper_InitializeWeights();
VTKKWRCHelper_InitializationAndLoopStartTrilin();
VTKKWRCHelper_InitializeCompositeMultiTrilin();
for ( k = 0; k < numSteps; k++ )
{
if ( k )
{
mapper->FixedPointIncrement( pos, dir );
}
VTKKWRCHelper_CroppingCheckTrilin( pos );
mapper->ShiftVectorDown( pos, spos );
if ( spos[0] != oldSPos[0] ||
spos[1] != oldSPos[1] ||
spos[2] != oldSPos[2] )
{
oldSPos[0] = spos[0];
oldSPos[1] = spos[1];
oldSPos[2] = spos[2];
dptr = data + spos[0]*inc[0] + spos[1]*inc[1] + spos[2]*inc[2];
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 0, scale[0], shift[0] );
dptr++;
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 1, scale[1], shift[1] );
if ( components > 2 )
{
dptr++;
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 2, scale[2], shift[2] );
}
if ( components > 3 )
{
dptr++;
VTKKWRCHelper_GetCellComponentScalarValues( dptr, 3, scale[3], shift[3] );
}
}
VTKKWRCHelper_ComputeWeights(pos);
VTKKWRCHelper_InterpolateScalarComponent( val, c, components );
VTKKWRCHelper_LookupAndCombineIndependentColorsUS( colorTable, scalarOpacityTable,
val, weights, components, tmp );
VTKKWRCHelper_CompositeColorAndCheckEarlyTermination( color, tmp, remainingOpacity );
}
VTKKWRCHelper_SetPixelColor( imagePtr, color, remainingOpacity );
VTKKWRCHelper_IncrementAndLoopEnd();
}
void vtkFixedPointVolumeRayCastCompositeHelper::GenerateImage(
int threadID,
int threadCount,
vtkVolume *vol,
vtkFixedPointVolumeRayCastMapper *mapper )
{
void *data = mapper->GetCurrentScalars()->GetVoidPointer(0);
int scalarType = mapper->GetCurrentScalars()->GetDataType();
// Nearest Neighbor interpolate
if ( mapper->ShouldUseNearestNeighborInterpolation( vol ) )
{
// One component data
if ( mapper->GetCurrentScalars()->GetNumberOfComponents() == 1 )
{
// Scale == 1.0 and shift == 0.0 - simple case (faster)
if ( mapper->GetTableScale()[0] == 1.0 &&
mapper->GetTableShift()[0] == 0.0 )
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageOneSimpleNN(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
else
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageOneNN(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
}
// More that one independent components
else if ( vol->GetProperty()->GetIndependentComponents() )
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageIndependentNN(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
// Dependent (color) components
else
{
// Two components - the first specifies color (through a lookup table)
// and the second specified opacity (through a lookup table)
if ( mapper->GetCurrentScalars()->GetNumberOfComponents() == 2 )
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageTwoDependentNN(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
// Four components - they must be unsigned char, the first three directly
// specify color and the fourth specifies opacity (through a lookup
// table)
else
{
if ( scalarType == VTK_UNSIGNED_CHAR )
{
vtkFixedPointCompositeHelperGenerateImageFourDependentNN(
static_cast<unsigned char *>(data), threadID, threadCount, mapper,
vol );
}
else
{
vtkErrorMacro("Four component dependent data must be unsigned char!");
}
}
}
}
// Trilinear Interpolation
else
{
// One component
if ( mapper->GetCurrentScalars()->GetNumberOfComponents() == 1 )
{
// Scale == 1.0 and shift == 0.0 - simple case (faster)
if ( mapper->GetTableScale()[0] == 1.0 &&
mapper->GetTableShift()[0] == 0.0 )
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageOneSimpleTrilin(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
// Scale != 1.0 or shift != 0.0 - must apply scale/shift in inner loop
else
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageOneTrilin(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
}
// Indepedent components (more than one)
else if ( vol->GetProperty()->GetIndependentComponents() )
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageIndependentTrilin(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
// Dependent components
else
{
// Two components - the first specifies color (through a lookup table)
// and the second specified opacity (through a lookup table)
if ( mapper->GetCurrentScalars()->GetNumberOfComponents() == 2 )
{
switch ( scalarType )
{
vtkTemplateMacro(
vtkFixedPointCompositeHelperGenerateImageTwoDependentTrilin(
static_cast<VTK_TT *>(data),
threadID, threadCount, mapper, vol) );
}
}
// Four components - they must be unsigned char, the first three directly
// specify color and the fourth specifies opacity (through a lookup
// table)
else
{
if ( scalarType == VTK_UNSIGNED_CHAR )
{
vtkFixedPointCompositeHelperGenerateImageFourDependentTrilin(
static_cast<unsigned char *>(data), threadID, threadCount, mapper,
vol );
}
else
{
vtkErrorMacro("Four component dependent data must be unsigned char!");
}
}
}
}
}
// Print method for vtkFixedPointVolumeRayCastCompositeHelper
void vtkFixedPointVolumeRayCastCompositeHelper::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
}
|