File: vtkSphericalDirectionEncoder.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (152 lines) | stat: -rw-r--r-- 4,295 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkSphericalDirectionEncoder.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkSphericalDirectionEncoder.h"
#include "vtkObjectFactory.h"

#include "vtkMath.h"
#include "vtkTransform.h"

vtkStandardNewMacro(vtkSphericalDirectionEncoder);

float vtkSphericalDirectionEncoder::DecodedGradientTable[65536 * 3];
int   vtkSphericalDirectionEncoder::DecodedGradientTableInitialized = 0;

// Construct the object. Initialize the index table which will be
// used to map the normal into a patch on the recursively subdivided
// sphere.
vtkSphericalDirectionEncoder::vtkSphericalDirectionEncoder()
{
  this->InitializeDecodedGradientTable();
}

// Destruct a vtkSphericalDirectionEncoder - free up any memory used
vtkSphericalDirectionEncoder::~vtkSphericalDirectionEncoder()
{
}

// Encode n into a 2 byte value. The first byte will be theta - the
// rotation angle around the z axis. The second (high order) byte is
// phi - the elevation of the vector. 256 values are used for theta,
// but only 255 values for phi, leaving room for a "zero normal" code
int vtkSphericalDirectionEncoder::GetEncodedDirection( float n[3] )
{
  if ( n[0] == 0.0 && n[1] == 0.0 && n[2] == 0.0 )
    {
    return ( 255 * 256 );
    }

  float theta, phi;

  // Need to handle this separately since some atan2 implementations
  // don't handle a zero denominator
  if ( n[0] == 0 )
    {
    theta = ( n[1] > 0 ) ? 90.0 : 270.0 ;
    }
  else
    {
    theta = vtkMath::DegreesFromRadians( atan2( n[1], n[0] ) );
    theta = ( theta < 0.0 )    ? ( theta + 360.0 ) : theta;
    theta = ( theta >= 360.0 ) ? ( theta - 360.0 ) : theta;
    }

  phi = vtkMath::DegreesFromRadians( asin( n[2] ) );
  phi = phi > 90.5 ? ( phi-360 ) : phi;

  int lowByte, highByte;

  lowByte  = static_cast<int>( theta * 255.0 / 359.0 + 0.5 );
  highByte = static_cast<int>( ( phi + 90.0 ) * 254.0 / 180.0 + 0.5 );

  lowByte = lowByte < 0   ? 0   : lowByte;
  lowByte = lowByte > 255 ? 255 : lowByte;

  highByte = highByte < 0   ? 0   : highByte;
  highByte = highByte > 254 ? 254 : highByte;

  return ( lowByte + highByte * 256 );
}

float *vtkSphericalDirectionEncoder::GetDecodedGradient( int value )
{
  return &(vtkSphericalDirectionEncoder::DecodedGradientTable[value*3]);
}

// This is the table that maps the encoded gradient back into
// a float triple.
void vtkSphericalDirectionEncoder::InitializeDecodedGradientTable()
{
  if ( vtkSphericalDirectionEncoder::DecodedGradientTableInitialized )
    {
    return;
    }

  float theta, phi;
  int   i, j;

  vtkTransform *transformPhi = vtkTransform::New();
  vtkTransform *transformTheta = vtkTransform::New();

  float v1[3] = {1,0,0};
  float v2[3], v3[3];

  float *ptr = vtkSphericalDirectionEncoder::DecodedGradientTable;

  for ( j = 0; j < 256; j++ )
    {
    phi = -89.5 + j * ( 179.0 / 254.0 );

      transformPhi->Identity();
      transformPhi->RotateY( -phi );
      transformPhi->TransformPoint( v1, v2 );

    for ( i = 0; i < 256; i++ )
      {
      if ( j < 255 )
        {
        theta = i * (359.0 / 255.0);

        transformTheta->Identity();
        transformTheta->RotateZ( theta );
        transformTheta->TransformPoint( v2, v3 );
        }
      else
        {
        v3[0] = 0.0;
        v3[1] = 0.0;
        v3[2] = 0.0;
        }

      *(ptr++) = v3[0];
      *(ptr++) = v3[1];
      *(ptr++) = v3[2];
      }
    }

  transformPhi->Delete();
  transformTheta->Delete();

  vtkSphericalDirectionEncoder::DecodedGradientTableInitialized = 1;
}

// Print the vtkSphericalDirectionEncoder
void vtkSphericalDirectionEncoder::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "Number of encoded directions: " <<
    this->GetNumberOfEncodedDirections() << endl;
}