1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkVolumeRayCastMIPFunction.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkVolumeRayCastMIPFunction.h"
#include "vtkVolumeRayCastMapper.h"
#include "vtkVolume.h"
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkStandardNewMacro(vtkVolumeRayCastMIPFunction);
// This is the templated function that actually casts a ray and computes
// the maximum value. It is valid for unsigned char and unsigned short,
template <class T>
void vtkCastMaxScalarValueRay( T *data_ptr, vtkVolumeRayCastDynamicInfo *dynamicInfo,
vtkVolumeRayCastStaticInfo *staticInfo )
{
float triMax, triValue;
int max = 0;;
float max_opacity;
int loop;
vtkIdType xinc, yinc, zinc;
int voxel[3], prev_voxel[3];
float ray_position[3];
T A, B, C, D, E, F, G, H;
float t00, t01, t10, t11, t0, t1;
vtkIdType Binc, Cinc, Dinc, Einc, Finc, Ginc, Hinc;
float xoff, yoff, zoff;
T *dptr;
int num_steps;
float *ray_increment;
float *grayArray, *RGBArray;
float *scalarArray;
T nnValue, nnMax;
num_steps = dynamicInfo->NumberOfStepsToTake;
ray_increment = dynamicInfo->TransformedIncrement;
grayArray = staticInfo->Volume->GetGrayArray();
RGBArray = staticInfo->Volume->GetRGBArray();
scalarArray = staticInfo->Volume->GetScalarOpacityArray();
xinc = staticInfo->DataIncrement[0];
yinc = staticInfo->DataIncrement[1];
zinc = staticInfo->DataIncrement[2];
// Initialize the ray position and voxel location
memcpy( ray_position, dynamicInfo->TransformedStart, 3*sizeof(float) );
// If we have nearest neighbor interpolation
if ( staticInfo->InterpolationType == VTK_NEAREST_INTERPOLATION )
{
voxel[0] = vtkMath::Round( ray_position[0] );
voxel[1] = vtkMath::Round( ray_position[1] );
voxel[2] = vtkMath::Round( ray_position[2] );
// Access the value at this voxel location
nnMax = *(data_ptr + voxel[2] * zinc +
voxel[1] * yinc + voxel[0] );
// Increment our position and compute our voxel location
ray_position[0] += ray_increment[0];
ray_position[1] += ray_increment[1];
ray_position[2] += ray_increment[2];
voxel[0] = vtkMath::Round( ray_position[0] );
voxel[1] = vtkMath::Round( ray_position[1] );
voxel[2] = vtkMath::Round( ray_position[2] );
// For each step along the ray
for ( loop = 1; loop < num_steps; loop++ )
{
// Access the value at this voxel location
nnValue = *(data_ptr + voxel[2] * zinc +
voxel[1] * yinc + voxel[0] );
// If this is greater than the max, this is the new max.
if ( nnValue > nnMax )
{
nnMax = nnValue;
}
// Increment our position and compute our voxel location
ray_position[0] += ray_increment[0];
ray_position[1] += ray_increment[1];
ray_position[2] += ray_increment[2];
voxel[0] = vtkMath::Round( ray_position[0] );
voxel[1] = vtkMath::Round( ray_position[1] );
voxel[2] = vtkMath::Round( ray_position[2] );
}
max = (int)nnMax;
}
// We are using trilinear interpolation
else if ( staticInfo->InterpolationType == VTK_LINEAR_INTERPOLATION )
{
voxel[0] = vtkMath::Floor( ray_position[0] );
voxel[1] = vtkMath::Floor( ray_position[1] );
voxel[2] = vtkMath::Floor( ray_position[2] );
// Compute the increments to get to the other 7 voxel vertices from A
Binc = xinc;
Cinc = yinc;
Dinc = xinc + yinc;
Einc = zinc;
Finc = zinc + xinc;
Ginc = zinc + yinc;
Hinc = zinc + xinc + yinc;
// Set values for the first pass through the loop
dptr = data_ptr + voxel[2] * zinc + voxel[1] * yinc + voxel[0];
A = *(dptr);
B = *(dptr + Binc);
C = *(dptr + Cinc);
D = *(dptr + Dinc);
E = *(dptr + Einc);
F = *(dptr + Finc);
G = *(dptr + Ginc);
H = *(dptr + Hinc);
// Compute our offset in the voxel, and use that to trilinearly
// interpolate a value
xoff = ray_position[0] - (float) voxel[0];
yoff = ray_position[1] - (float) voxel[1];
zoff = ray_position[2] - (float) voxel[2];
vtkTrilinFuncMacro( triMax, xoff, yoff, zoff, A, B, C, D, E, F, G, H );
// Keep the voxel location so that we know when we've moved into a
// new voxel
memcpy( prev_voxel, voxel, 3*sizeof(int) );
// Increment our position and compute our voxel location
ray_position[0] += ray_increment[0];
ray_position[1] += ray_increment[1];
ray_position[2] += ray_increment[2];
voxel[0] = vtkMath::Floor( ray_position[0] );
voxel[1] = vtkMath::Floor( ray_position[1] );
voxel[2] = vtkMath::Floor( ray_position[2] );
// For each step along the ray
for ( loop = 1; loop < num_steps; loop++ )
{
// Have we moved into a new voxel? If so we need to recompute A-H
if ( prev_voxel[0] != voxel[0] ||
prev_voxel[1] != voxel[1] ||
prev_voxel[2] != voxel[2] )
{
dptr = data_ptr + voxel[2] * zinc + voxel[1] * yinc + voxel[0];
A = *(dptr);
B = *(dptr + Binc);
C = *(dptr + Cinc);
D = *(dptr + Dinc);
E = *(dptr + Einc);
F = *(dptr + Finc);
G = *(dptr + Ginc);
H = *(dptr + Hinc);
memcpy( prev_voxel, voxel, 3*sizeof(int) );
}
// Compute our offset in the voxel, and use that to trilinearly
// interpolate a value
xoff = ray_position[0] - (float) voxel[0];
yoff = ray_position[1] - (float) voxel[1];
zoff = ray_position[2] - (float) voxel[2];
vtkTrilinFuncMacro( triValue, xoff, yoff, zoff, A, B, C, D, E, F, G, H );
// If this value is greater than max, it is the new max
if ( triValue > triMax )
{
triMax = triValue;
}
// Increment our position and compute our voxel location
ray_position[0] += ray_increment[0];
ray_position[1] += ray_increment[1];
ray_position[2] += ray_increment[2];
voxel[0] = vtkMath::Floor( ray_position[0] );
voxel[1] = vtkMath::Floor( ray_position[1] );
voxel[2] = vtkMath::Floor( ray_position[2] );
}
max = (int)triMax;
}
if ( max < 0 )
{
max = 0;
}
else if ( max > staticInfo->Volume->GetArraySize() - 1 )
{
max = (int)(staticInfo->Volume->GetArraySize() - 1);
}
dynamicInfo->ScalarValue = max;
max_opacity = scalarArray[max];
// Set the return pixel value.
if( staticInfo->ColorChannels == 1 )
{
dynamicInfo->Color[0] = max_opacity * grayArray[max];
dynamicInfo->Color[1] = max_opacity * grayArray[max];
dynamicInfo->Color[2] = max_opacity * grayArray[max];
dynamicInfo->Color[3] = max_opacity;
}
else if ( staticInfo->ColorChannels == 3 )
{
dynamicInfo->Color[0] = max_opacity * RGBArray[max*3];
dynamicInfo->Color[1] = max_opacity * RGBArray[max*3+1];
dynamicInfo->Color[2] = max_opacity * RGBArray[max*3+2];
dynamicInfo->Color[3] = max_opacity;
}
dynamicInfo->NumberOfStepsTaken = num_steps;
}
// This is the templated function that actually casts a ray and computes
// the maximum value. It is valid for unsigned char and unsigned short,
template <class T>
void vtkCastMaxOpacityRay( T *data_ptr, vtkVolumeRayCastDynamicInfo *dynamicInfo,
vtkVolumeRayCastStaticInfo *staticInfo )
{
float max;
float opacity;
float value;
int max_value = 0;
int loop;
int xinc, yinc, zinc;
int voxel[3];
int prev_voxel[3];
float ray_position[3];
T A, B, C, D, E, F, G, H;
float t00, t01, t10, t11, t0, t1;
int Binc, Cinc, Dinc, Einc, Finc, Ginc, Hinc;
float xoff, yoff, zoff;
T *dptr;
int steps_this_ray = 0;
float *SOTF;
int num_steps;
float *ray_start, *ray_increment;
float *grayArray, *RGBArray;
num_steps = dynamicInfo->NumberOfStepsToTake;
ray_start = dynamicInfo->TransformedStart;
ray_increment = dynamicInfo->TransformedIncrement;
SOTF = staticInfo->Volume->GetScalarOpacityArray();
grayArray = staticInfo->Volume->GetGrayArray();
RGBArray = staticInfo->Volume->GetRGBArray();
// Set the max value. This will not always be correct and should be fixed
max = -999999.0;
xinc = staticInfo->DataIncrement[0];
yinc = staticInfo->DataIncrement[1];
zinc = staticInfo->DataIncrement[2];
// Initialize the ray position and voxel location
ray_position[0] = ray_start[0];
ray_position[1] = ray_start[1];
ray_position[2] = ray_start[2];
// If we have nearest neighbor interpolation
if ( staticInfo->InterpolationType == VTK_NEAREST_INTERPOLATION )
{
voxel[0] = vtkMath::Round( ray_position[0] );
voxel[1] = vtkMath::Round( ray_position[1] );
voxel[2] = vtkMath::Round( ray_position[2] );
// For each step along the ray
for ( loop = 0; loop < num_steps; loop++ )
{
// We've taken another step
steps_this_ray++;
// Access the value at this voxel location
value = *(data_ptr + voxel[2] * zinc +
voxel[1] * yinc + voxel[0] );
if ( value < 0 )
{
value = 0;
}
else if ( value > staticInfo->Volume->GetArraySize() - 1 )
{
value = staticInfo->Volume->GetArraySize() - 1;
}
opacity = SOTF[(int)value];
// If this is greater than the max, this is the new max.
if ( opacity > max )
{
max = opacity;
max_value = (int) value;
}
// Increment our position and compute our voxel location
ray_position[0] += ray_increment[0];
ray_position[1] += ray_increment[1];
ray_position[2] += ray_increment[2];
voxel[0] = vtkMath::Round( ray_position[0] );
voxel[1] = vtkMath::Round( ray_position[1] );
voxel[2] = vtkMath::Round( ray_position[2] );
}
}
// We are using trilinear interpolation
else if ( staticInfo->InterpolationType == VTK_LINEAR_INTERPOLATION )
{
voxel[0] = vtkMath::Floor( ray_position[0] );
voxel[1] = vtkMath::Floor( ray_position[1] );
voxel[2] = vtkMath::Floor( ray_position[2] );
// Compute the increments to get to the other 7 voxel vertices from A
Binc = xinc;
Cinc = yinc;
Dinc = xinc + yinc;
Einc = zinc;
Finc = zinc + xinc;
Ginc = zinc + yinc;
Hinc = zinc + xinc + yinc;
// Set values for the first pass through the loop
dptr = data_ptr + voxel[2] * zinc + voxel[1] * yinc + voxel[0];
A = *(dptr);
B = *(dptr + Binc);
C = *(dptr + Cinc);
D = *(dptr + Dinc);
E = *(dptr + Einc);
F = *(dptr + Finc);
G = *(dptr + Ginc);
H = *(dptr + Hinc);
// Keep the voxel location so that we know when we've moved into a
// new voxel
prev_voxel[0] = voxel[0];
prev_voxel[1] = voxel[1];
prev_voxel[2] = voxel[2];
// For each step along the ray
for ( loop = 0; loop < num_steps; loop++ )
{
// We've taken another step
steps_this_ray++;
// Have we moved into a new voxel? If so we need to recompute A-H
if ( prev_voxel[0] != voxel[0] ||
prev_voxel[1] != voxel[1] ||
prev_voxel[2] != voxel[2] )
{
dptr = data_ptr + voxel[2] * zinc + voxel[1] * yinc + voxel[0];
A = *(dptr);
B = *(dptr + Binc);
C = *(dptr + Cinc);
D = *(dptr + Dinc);
E = *(dptr + Einc);
F = *(dptr + Finc);
G = *(dptr + Ginc);
H = *(dptr + Hinc);
prev_voxel[0] = voxel[0];
prev_voxel[1] = voxel[1];
prev_voxel[2] = voxel[2];
}
// Compute our offset in the voxel, and use that to trilinearly
// interpolate a value
xoff = ray_position[0] - (float) voxel[0];
yoff = ray_position[1] - (float) voxel[1];
zoff = ray_position[2] - (float) voxel[2];
vtkTrilinFuncMacro( value, xoff, yoff, zoff, A, B, C, D, E, F, G, H );
if ( value < 0 )
{
value = 0;
}
else if ( value > staticInfo->Volume->GetArraySize() - 1 )
{
value = staticInfo->Volume->GetArraySize() - 1;
}
opacity = SOTF[(int)value];
// If this is greater than the max, this is the new max.
if ( opacity > max )
{
max = opacity;
max_value = (int) value;
}
// Increment our position and compute our voxel location
ray_position[0] += ray_increment[0];
ray_position[1] += ray_increment[1];
ray_position[2] += ray_increment[2];
voxel[0] = vtkMath::Floor( ray_position[0] );
voxel[1] = vtkMath::Floor( ray_position[1] );
voxel[2] = vtkMath::Floor( ray_position[2] );
}
}
dynamicInfo->ScalarValue = max;
// Set the return pixel value. The depth value is currently useless and
// should be fixed.
if( staticInfo->ColorChannels == 1 )
{
dynamicInfo->Color[0] = max * grayArray[max_value];
dynamicInfo->Color[1] = max * grayArray[max_value];
dynamicInfo->Color[2] = max * grayArray[max_value];
dynamicInfo->Color[3] = max;
}
else if ( staticInfo->ColorChannels == 3 )
{
dynamicInfo->Color[0] = max * RGBArray[max_value*3];
dynamicInfo->Color[1] = max * RGBArray[max_value*3+1];
dynamicInfo->Color[2] = max * RGBArray[max_value*3+2];
dynamicInfo->Color[3] = max;
}
dynamicInfo->NumberOfStepsTaken = steps_this_ray;
}
// Construct a new vtkVolumeRayCastMIPFunction
vtkVolumeRayCastMIPFunction::vtkVolumeRayCastMIPFunction()
{
this->MaximizeMethod = VTK_MAXIMIZE_SCALAR_VALUE;
}
// Destruct the vtkVolumeRayCastMIPFunction
vtkVolumeRayCastMIPFunction::~vtkVolumeRayCastMIPFunction()
{
}
// This is called from RenderAnImage (in vtkDepthPARCMapper.cxx)
// It uses the integer data type flag that is passed in to
// determine what type of ray needs to be cast (which is handled
// by a templated function.
void vtkVolumeRayCastMIPFunction::CastRay( vtkVolumeRayCastDynamicInfo *dynamicInfo,
vtkVolumeRayCastStaticInfo *staticInfo)
{
void *data_ptr;
data_ptr = staticInfo->ScalarDataPointer;
if ( this->MaximizeMethod == VTK_MAXIMIZE_SCALAR_VALUE )
{
switch ( staticInfo->ScalarDataType )
{
case VTK_UNSIGNED_CHAR:
vtkCastMaxScalarValueRay( (unsigned char *)data_ptr, dynamicInfo,
staticInfo );
break;
case VTK_UNSIGNED_SHORT:
vtkCastMaxScalarValueRay( (unsigned short *)data_ptr, dynamicInfo,
staticInfo );
break;
default:
vtkWarningMacro ( << "Unsigned char and unsigned short are the only supported datatypes for rendering" );
break;
}
}
else
{
switch ( staticInfo->ScalarDataType )
{
case VTK_UNSIGNED_CHAR:
vtkCastMaxOpacityRay( (unsigned char *)data_ptr, dynamicInfo, staticInfo );
break;
case VTK_UNSIGNED_SHORT:
vtkCastMaxOpacityRay( (unsigned short *)data_ptr, dynamicInfo, staticInfo );
break;
default:
vtkWarningMacro ( << "Unsigned char and unsigned short are the only supported datatypes for rendering" );
break;
}
}
}
float vtkVolumeRayCastMIPFunction::GetZeroOpacityThreshold( vtkVolume *vtkNotUsed(vol) )
{
return ( 1.0 );
}
// This is an update method that is called from Render (in
// vtkDepthPARCMapper.cxx). It allows the specific mapper type to
// update any local caster variables. In this case, nothing needs
// to be done here
void vtkVolumeRayCastMIPFunction::SpecificFunctionInitialize(
vtkRenderer *vtkNotUsed(ren),
vtkVolume *vtkNotUsed(vol),
vtkVolumeRayCastStaticInfo *staticInfo,
vtkVolumeRayCastMapper *vtkNotUsed(mapper) )
{
staticInfo->MIPFunction = 1;
staticInfo->MaximizeOpacity = (this->MaximizeMethod == VTK_MAXIMIZE_OPACITY);
}
// Description:
// Return the maximize method as a descriptive character string.
const char *vtkVolumeRayCastMIPFunction::GetMaximizeMethodAsString(void)
{
if( this->MaximizeMethod == VTK_MAXIMIZE_SCALAR_VALUE )
{
return "Maximize Scalar Value";
}
if( this->MaximizeMethod == VTK_MAXIMIZE_OPACITY )
{
return "Maximize Opacity";
}
else
{
return "Unknown";
}
}
// Print method for vtkVolumeRayCastMIPFunction
void vtkVolumeRayCastMIPFunction::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Maximize Method: " << this->GetMaximizeMethodAsString()
<< "\n";
}
|