File: vtkBridgeCell.cxx

package info (click to toggle)
vtk6 6.3.0%2Bdfsg2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 118,972 kB
  • sloc: cpp: 1,442,790; ansic: 113,395; python: 72,383; tcl: 46,998; xml: 8,119; yacc: 4,525; java: 4,239; perl: 3,108; lex: 1,694; sh: 1,093; asm: 154; makefile: 68; objc: 17
file content (1065 lines) | stat: -rw-r--r-- 34,565 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkBridgeCell.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkBridgeCell - Implementation of vtkGenericAdaptorCell
// .SECTION Description
// It is just an example that show how to implement the Generic. It is also
// used for testing and evaluating the Generic.
// .SECTION See Also
// vtkGenericAdaptorCell, vtkBridgeDataSet


#include "vtkBridgeCell.h"

#include <cassert>

#include "vtkBridgeCellIterator.h"
#include "vtkObjectFactory.h"
#include "vtkBridgeDataSet.h"
#include "vtkDataSet.h"
#include "vtkDoubleArray.h"
#include "vtkGenericAttributeCollection.h"
#include "vtkBridgeAttribute.h"
#include "vtkContourValues.h"
#include "vtkPoints.h"
#include "vtkCellArray.h"
#include "vtkDataSetAttributes.h"
#include "vtkBridgePointIterator.h"

// All that stuff is for InterpolationFunction()

#include "vtkEmptyCell.h"
#include "vtkVertex.h"
#include "vtkPolyVertex.h"
#include "vtkLine.h"
#include "vtkPolyLine.h"
#include "vtkTriangle.h"
#include "vtkTriangleStrip.h"
#include "vtkQuad.h"
#include "vtkPixel.h"
#include "vtkPolygon.h"
#include "vtkTetra.h"
#include "vtkHexahedron.h"
#include "vtkVoxel.h"
#include "vtkWedge.h"
#include "vtkPyramid.h"

#include "vtkQuadraticEdge.h"
#include "vtkQuadraticTriangle.h"
#include "vtkQuadraticQuad.h"
#include "vtkQuadraticTetra.h"
#include "vtkQuadraticHexahedron.h"
#include "vtkBiQuadraticTriangle.h"
#include "vtkConvexPointSet.h"
# include "vtkPentagonalPrism.h"
# include "vtkHexagonalPrism.h"
# include "vtkQuadraticWedge.h"
# include "vtkQuadraticPyramid.h"



vtkStandardNewMacro(vtkBridgeCell);

//-----------------------------------------------------------------------------
void vtkBridgeCell::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);
}

//-----------------------------------------------------------------------------
// Description:
// Unique identification number of the cell over the whole
// data set. This unique key may not be contiguous.
vtkIdType vtkBridgeCell::GetId()
{
  return this->Id;
}

//-----------------------------------------------------------------------------
// Description:
// Does `this' a cell of a dataset? (otherwise, it is a boundary cell)
int vtkBridgeCell::IsInDataSet()
{
  return this->BoolIsInDataSet;
}

//-----------------------------------------------------------------------------
// Description:
// Type of the current cell.
// \post (result==VTK_HIGHER_ORDER_EDGE)||
//       (result==VTK_HIGHER_ORDER_TRIANGLE)||
//       (result==VTK_HIGHER_ORDER_TETRAHEDRON)
int vtkBridgeCell::GetType()
{
  int result=0;
  switch(this->Cell->GetCellType())
    {
    case VTK_TRIANGLE:
    case VTK_QUADRATIC_TRIANGLE:
    case VTK_BIQUADRATIC_TRIANGLE:
      result=VTK_HIGHER_ORDER_TRIANGLE;
      break;
    case VTK_QUAD:
    case VTK_QUADRATIC_QUAD:
      result=VTK_HIGHER_ORDER_QUAD;
      break;
    case VTK_TETRA:
    case VTK_QUADRATIC_TETRA:
      result=VTK_HIGHER_ORDER_TETRAHEDRON;
      break;
    case VTK_VOXEL:
    case VTK_HEXAHEDRON:
    case VTK_QUADRATIC_HEXAHEDRON:
      result=VTK_HIGHER_ORDER_HEXAHEDRON;
      break;
    case VTK_WEDGE:
    case VTK_QUADRATIC_WEDGE:
      result=VTK_HIGHER_ORDER_WEDGE;
      break;
    case VTK_PYRAMID:
    case VTK_QUADRATIC_PYRAMID:
      result=VTK_HIGHER_ORDER_PYRAMID;
      break;
    case VTK_PENTAGONAL_PRISM:
      assert("check: TODO" && 0);
      break;
    case VTK_HEXAGONAL_PRISM:
      assert("check: TODO" && 0);
      break;
    default:
      assert("check: impossible case" && 0);
      break;
    }
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Topological dimension of the current cell.
// \post valid_result: result>=0 && result<=3
int vtkBridgeCell::GetDimension()
{
  int result=this->Cell->GetCellDimension();
  assert("post: valid_result" && (result>=0)&&(result<=3));
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Interpolation order of the geometry.
// \post positive_result: result>=0
int vtkBridgeCell::GetGeometryOrder()
{
  int result;
  if(this->Cell->IsLinear())
    {
    result=1;
    }
  else
    {
    result=2; // GetOrder() is missing in vtkCell...
    }
  assert("post: positive_result" && result>=0);
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Does the cell have no higher-order interpolation for geometry?
// \post definition: result==(GetGeometryOrder()==1)
int vtkBridgeCell::IsGeometryLinear()
{
  int result=this->Cell->IsLinear();
  assert("post: definition" && result==(GetGeometryOrder()==1));
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Interpolation order of attribute `a' on the cell (may differ by cell).
// \pre a_exists: a!=0
// \post positive_result: result>=0
int vtkBridgeCell::GetAttributeOrder(vtkGenericAttribute *vtkNotUsed(a))
{
  int result=this->GetGeometryOrder();
  assert("post: positive_result" && result>=0);
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Does the attribute `a' have no higher-order interpolation for the cell?
// \pre a_exists: a!=0
// \post definition: result==(GetAttributeOrder()==1)
int vtkBridgeCell::IsAttributeLinear(vtkGenericAttribute *a)
{
  (void)a; // The attribute order is the order of the geometry.
  int result=this->IsGeometryLinear();
  assert("post: definition" && result==(GetAttributeOrder(a)==1));
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Is the cell primary (i.e. not composite) ?
int vtkBridgeCell::IsPrimary()
{
  return this->Cell->IsPrimaryCell();
}

//-----------------------------------------------------------------------------
// Description:
// Number of points that compose the cell.
// \post positive_result: result>=0
int vtkBridgeCell::GetNumberOfPoints()
{
  int result=this->Cell->GetNumberOfPoints();
  assert("post: positive_result" && result>=0);
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Number of boundaries of dimension `dim' (or all dimensions less than
// GetDimension() if -1) of the cell.
// \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
// \post positive_result: result>=0
int vtkBridgeCell::GetNumberOfBoundaries(int dim)
{
  assert("pre: valid_dim_range" && ((dim==-1) ||((dim>=0)&&(dim<GetDimension()))));

  int result=0;
  if( (dim==0) && (this->GetDimension()>1) )
    {
    result += this->Cell->GetNumberOfPoints();
    if(!this->Cell->IsLinear())
      { // Old cell API treats mid-edge nodes as vertices; subtract those out:
      result -= this->Cell->GetNumberOfEdges();
      }
    }
  if( ((dim==-1) && (this->GetDimension()>1)) || (dim==1) )
    {
    result=result+this->Cell->GetNumberOfEdges();
    }
  if( ((dim==-1) && (this->GetDimension()>2)) || (dim==2) )
    {
    result=result+this->Cell->GetNumberOfFaces();
    }

  assert("post: positive_result" && result>=0);
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Accumulated number of DOF nodes of the current cell. A DOF node is
// a component of cell with a given topological dimension. e.g.: a triangle
// has 7 DOF: 1 face, 3 edges, 3 vertices. An hexahedron has 27 DOF:
// 1 region, 6 faces, 12 edges, 8 vertices.
// \post valid_result: result==GetNumberOfBoundaries(-1)+1
int vtkBridgeCell::GetNumberOfDOFNodes()
{
  return this->GetNumberOfBoundaries(-1)+1;
}

//-----------------------------------------------------------------------------
// Description:
// Return the points of cell into `it'.
// \pre it_exists: it!=0
void vtkBridgeCell::GetPointIterator(vtkGenericPointIterator *it)
{
  assert("pre: it_exists" && it!=0);
  static_cast<vtkBridgePointIterator *>(it)->InitWithCell(this);
}

//-----------------------------------------------------------------------------
// Description:
// Create an empty cell iterator.
// \post result_exists: result!=0
vtkGenericCellIterator *vtkBridgeCell::NewCellIterator()
{
  vtkGenericCellIterator *result=vtkBridgeCellIterator::New();
  assert("post: result_exists" && result!=0);
  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Return in `boundaries' the cells of dimension `dim' (or all dimensions
// less than GetDimension() if -1) that are part of the boundary of the cell.
// \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
// \pre boundaries_exist: boundaries!=0
void vtkBridgeCell::GetBoundaryIterator(vtkGenericCellIterator *boundaries,
                                        int dim)
{
  assert("pre: valid_dim_range" && ((dim==-1) ||((dim>=0)&&(dim<GetDimension()))));
  assert("pre: boundaries_exist" && boundaries!=0);
  static_cast<vtkBridgeCellIterator *>(boundaries)->InitWithCellBoundaries(this,dim);
}

//-----------------------------------------------------------------------------
// Description:
// Number of cells (dimension>boundary->GetDimension()) of the dataset
// that share the boundary `boundary' of `this'.
// `this' IS NOT INCLUDED.
// \pre boundary_exists: boundary!=0
// \pre real_boundary: !boundary->IsInDataSet()
// \pre cell_of_the_dataset: IsInDataSet()
// \pre boundary: HasBoundary(boundary)
// \post positive_result: result>=0
int vtkBridgeCell::CountNeighbors(vtkGenericAdaptorCell *boundary)
{
  assert("pre: boundary_exists" && boundary!=0);
  assert("pre: real_boundary" && !boundary->IsInDataSet());
  assert("pre: cell_of_the_dataset" && IsInDataSet());

  vtkIdList *cells=vtkIdList::New();
  vtkBridgeCell *b=static_cast<vtkBridgeCell *>(boundary);
  vtkIdList *pts=b->Cell->GetPointIds();
  this->DataSet->Implementation->GetCellNeighbors(this->Id,pts,cells);
  int result=cells->GetNumberOfIds();
  cells->Delete();

  assert("post: positive_result" && result>=0);

  return result;
}

//-----------------------------------------------------------------------------
// \pre large_enough: GetDimension()>=2
// \pre right_size: sizeof(sharing)==GetNumberOfBoundaries(1);
void vtkBridgeCell::CountEdgeNeighbors(int *sharing)
{
  assert("pre: large_enough" && this->GetDimension()>=2);

  vtkIdType c=this->Cell->GetNumberOfEdges();
  vtkIdList *cells=vtkIdList::New();
  vtkIdType i=0;
  vtkCell *edge;
  vtkIdList *pts;

  while(i<c)
    {
    edge=this->Cell->GetEdge(i); // edge is deleted automatically by this->Cell
    pts=edge->GetPointIds();
    this->DataSet->Implementation->GetCellNeighbors(this->Id,pts,cells);
    sharing[i]=cells->GetNumberOfIds();
    ++i;
    }
  cells->Delete();
}

//-----------------------------------------------------------------------------
// Description:
// Put into `neighbors' the cells (dimension>boundary->GetDimension())
// of the dataset that share the boundary `boundary' of `this'.
// `this' IS NOT INCLUDED.
// \pre boundary_exists: boundary!=0
// \pre real_boundary: !boundary->IsInDataSet()
// \pre cell_of_the_dataset: IsInDataSet()
// \pre boundary: HasBoundary(boundary)
// \pre neighbors_exist: neighbors!=0
void vtkBridgeCell::GetNeighbors(vtkGenericAdaptorCell *boundary,
                                 vtkGenericCellIterator *neighbors)
{
  assert("pre: boundary_exists" && boundary!=0);
  assert("pre: real_boundary" && !boundary->IsInDataSet());
  assert("pre: cell_of_the_dataset" && IsInDataSet());
  assert("pre: neighbors_exist" && neighbors!=0);

  vtkIdList *cells=vtkIdList::New();
  vtkIdList *pts=static_cast<vtkBridgeCell *>(boundary)->Cell->GetPointIds();
  this->DataSet->Implementation->GetCellNeighbors(this->Id,pts,cells);

  static_cast<vtkBridgeCellIterator *>(neighbors)->InitWithCells(cells,this->DataSet);

  cells->Delete();
}

//-----------------------------------------------------------------------------
// Description:
// Compute the closest boundary of the current sub-cell `subId' for point
// `pcoord' (in parametric coordinates) in `boundary', and return whether
// the point is inside the cell or not. `boundary' is of dimension
// GetDimension()-1.
// \pre positive_subId: subId>=0
int vtkBridgeCell::FindClosestBoundary(int subId,
                                       double pcoords[3],
                                       vtkGenericCellIterator* &boundary)
{
  assert("pre: positive_subId" && subId>=0);

  vtkIdList *pts=vtkIdList::New();
  int result=this->Cell->CellBoundary(subId,pcoords,pts);
  static_cast<vtkBridgeCellIterator *>(boundary)->InitWithPoints(this->Cell->Points,pts,this->GetDimension()-1,0); // id of the boundary always 0?
  pts->Delete();

  return result;
}

//-----------------------------------------------------------------------------
// Description:
// Is `x' inside the current cell? It also evaluate parametric coordinates
// `pcoords', sub-cell id `subId' (0 means primary cell), distance squared
// to the sub-cell in `dist2' and closest corner point `closestPoint'.
// `dist2' and `closestPoint' are not evaluated if `closestPoint'==0.
// If a numerical error occurred, -1 is returned and all other results
// should be ignored.
// \post valid_result: result==-1 || result==0 || result==1
// \post positive_distance: result!=-1 implies (closestPoint!=0 implies
//                                               dist2>=0)
int vtkBridgeCell::EvaluatePosition(double x[3],
                                    double *closestPoint,
                                    int &subId,
                                    double pcoords[3],
                                    double &dist2)
{
  this->AllocateWeights();
  int result=this->Cell->EvaluatePosition(x,closestPoint,subId,pcoords,dist2,
                                          this->Weights);

  if(result)
    {
    // clamp pcoords
    int i=0;
    while(i<3)
      {
      if(pcoords[i]<0)
        {
        pcoords[i]=0;
        }
      else if(pcoords[i]>1)
        {
        pcoords[i]=1;
        }
      ++i;
      }
    }

  assert("post: valid_result" && (result==-1 || result==0 || result==1));
  assert("post: positive_distance" && (!(result!=-1) || (!(closestPoint!=0)||dist2>=0))); // A=>B: !A || B
  return result;
}

//----------------------------------------------------------------------------
// Description:
// Determine global coordinates `x' from sub-cell `subId' and parametric
// coordinates `pcoords' in the cell.
// \pre positive_subId: subId>=0
// \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
// &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1)
void vtkBridgeCell::EvaluateLocation(int subId,
                                     double pcoords[3],
                                     double x[3])
{
  assert("pre: positive_subId" && subId>=0);
  assert("pre: clamped_pcoords" && (0<=pcoords[0])&&(pcoords[0]<=1)
             &&(0<=pcoords[1])&&(pcoords[1]<=1)&&(0<=pcoords[2])
             &&(pcoords[2]<=1));

  this->AllocateWeights();
  this->Cell->EvaluateLocation(subId,pcoords,x,this->Weights);
}

//----------------------------------------------------------------------------
// Description:
// Interpolate the attribute `a' at local position `pcoords' of the cell into
// `val'.
// \pre a_exists: a!=0
// \pre a_is_point_centered: a->GetCentering()==vtkPointCentered
// \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
//                     pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
// \pre val_exists: val!=0
// \pre valid_size: sizeof(val)==a->GetNumberOfComponents()
void vtkBridgeCell::InterpolateTuple(vtkGenericAttribute *a, double pcoords[3],
                                     double *val)
{
  assert("pre: a_exists" && a!=0);
  assert("pre: a_is_point_centered" && a->GetCentering()==vtkPointCentered);
  assert("pre: clamped_point" && (pcoords[0]>=0 && pcoords[0]<=1
             && pcoords[1]>=0 && pcoords[1]<=1 && pcoords[2]>=0
                                  && pcoords[2]<=1));
  assert("pre: val_exists" && val!=0);

  vtkBridgeAttribute *ba = static_cast<vtkBridgeAttribute *>(a);

  int componentCount = a->GetNumberOfComponents();
  int ptCount = this->GetNumberOfPoints();

  if(a->GetCentering() == vtkPointCentered)
    {
    this->AllocateWeights();
    this->InterpolationFunctions(pcoords, this->Weights);

    memset(val,0, sizeof(double)*componentCount);
    for(int pt = 0; pt<ptCount; ++pt)
      {
      ba->Data->GetArray(ba->AttributeNumber)->
        GetTuple(this->Cell->GetPointId(pt),ba->InternalTuple);
      for(int component = 0; component<componentCount; ++component)
        {
        val[component] += ba->InternalTuple[component]*this->Weights[pt];
        }
      }
    }
  else // cell centered
    {
    // not need to interpolate
    ba->Data->GetArray(ba->AttributeNumber)->GetTuple(this->GetId(),val);
    }
}

//----------------------------------------------------------------------------
// Description:
// Interpolate the whole collection of attributes `c' at local position
// `pcoords' of the cell into `val'. Only point centered attributes are
// taken into account.
// \pre c_exists: c!=0
// \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
//                     pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
// \pre val_exists: val!=0
// \pre valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents()
void vtkBridgeCell::InterpolateTuple(vtkGenericAttributeCollection *c,
                                     double pcoords[3],
                                     double *val)
{
  assert("pre: c_exists" && c!=0);
  assert("pre: clamped_point" && (pcoords[0]>=0 && pcoords[0]<=1
             && pcoords[1]>=0 && pcoords[1]<=1 && pcoords[2]>=0
                                  && pcoords[2]<=1));
  assert("pre: val_exists" && val!=0);

///  assert("check: used!" && 0);

  double *p=val;
  int i=0;
  int count=c->GetNumberOfAttributes();
  while(i<count)
    {
    if(c->GetAttribute(i)->GetCentering()==vtkPointCentered)
      {
      this->InterpolateTuple(c->GetAttribute(i),pcoords,p);
      p=p+c->GetAttribute(i)->GetNumberOfComponents();
      }
    ++i;
    }
}

//-----------------------------------------------------------------------------
// Description:
// Is there an intersection between the current cell and the ray (`p1',`p2')
// according to a tolerance `tol'? If true, `x' is the global intersection,
// `t' is the parametric coordinate for the line, `pcoords' are the
// parametric coordinates for cell. `subId' is the sub-cell where
// the intersection occurs.
// \pre positive_tolerance: tol>0
int vtkBridgeCell::IntersectWithLine(double p1[3],
                                     double p2[3],
                                     double tol,
                                     double &t,
                                     double x[3],
                                     double pcoords[3],
                                     int &subId)
{
  return this->Cell->IntersectWithLine(p1,p2,tol,t,x,pcoords,subId);
}

//-----------------------------------------------------------------------------
// Description:
// Compute derivatives `derivs' of the attribute `attribute' (from its
// values at the corner points of the cell) given sub-cell `subId' (0 means
// primary cell) and parametric coordinates `pcoords'.
// Derivatives are in the x-y-z coordinate directions for each data value.
// \pre positive_subId: subId>=0
// \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
// &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1)
// \pre attribute_exists: attribute!=0
// \pre derivs_exists: derivs!=0
// \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3
void vtkBridgeCell::Derivatives(int subId,
                                double pcoords[3],
                                vtkGenericAttribute *attribute,
                                double *derivs)
{
  double *tuples =
    new double[attribute->GetNumberOfComponents()*this->GetNumberOfPoints()];
  attribute->GetTuple(this->InternalIterator,tuples);
  this->Cell->Derivatives(subId,pcoords,tuples,
                          attribute->GetNumberOfComponents(),derivs);
  delete [] tuples;
}

//----------------------------------------------------------------------------
// Description:
// Compute the bounding box of the current cell in `bounds' in global
// coordinates.
// THREAD SAFE
void vtkBridgeCell::GetBounds(double bounds[6])
{
  this->Cell->GetBounds(bounds);
}

//----------------------------------------------------------------------------
// Description:
// Return the bounding box of the current cell in global coordinates.
// NOT THREAD SAFE
// \post result_exists: result!=0
// \post valid_size: sizeof(result)>=6
double *vtkBridgeCell::GetBounds()
{
  return this->Cell->GetBounds();
}

//----------------------------------------------------------------------------
// Description:
// Bounding box diagonal squared of the current cell.
// \post positive_result: result>=0
double vtkBridgeCell::GetLength2()
{
  return this->Cell->GetLength2();
}

//----------------------------------------------------------------------------
// Description:
// Center of the current cell in parametric coordinates `pcoords'.
// If the current cell is a composite, the return value is the sub-cell id
// that the center is in.
// \post valid_result: (result>=0) && (IsPrimary() implies result==0)
int vtkBridgeCell::GetParametricCenter(double pcoords[3])
{
  return this->Cell->GetParametricCenter(pcoords);
}

//----------------------------------------------------------------------------
// Description:
// Distance of the parametric coordinate `pcoords' to the current cell.
// If inside the cell, a distance of zero is returned. This is used during
// picking to get the correct cell picked. (The tolerance will occasionally
// allow cells to be picked who are not really intersected "inside" the
// cell.)
// \post positive_result: result>=0
double vtkBridgeCell::GetParametricDistance(double pcoords[3])
{
  return this->Cell->GetParametricDistance(pcoords);
}

//----------------------------------------------------------------------------
// Description:
// Return a contiguous array of parametric coordinates of the points defining
// the current cell. In other words, (px,py,pz, px,py,pz, etc..) The
// coordinates are ordered consistent with the definition of the point
// ordering for the cell. Note that 3D parametric coordinates are returned
// no matter what the topological dimension of the cell. It includes the DOF
// nodes.
// \post valid_result_exists: ((IsPrimary()) && (result!=0)) ||
//                             ((!IsPrimary()) && (result==0))
//                     result!=0 implies sizeof(result)==GetNumberOfPoints()
double *vtkBridgeCell::GetParametricCoords()
{
  return this->Cell->GetParametricCoords();
}

// For the internals of the tesselation algorithm (the hash table in particular)
// Is the face `faceId' of the current cell on a exterior boundary of the
// dataset or not?
// \pre 3d: GetDimension()==3
//----------------------------------------------------------------------------
int vtkBridgeCell::IsFaceOnBoundary(vtkIdType faceId)
{
  assert("pre: 3d" && this->GetDimension()==3);

  // result=CountNeighbors(boundary(faceId))==0;

  vtkCell *face = this->Cell->GetFace(faceId);
  vtkIdList *cells = vtkIdList::New(); // expensive
  this->DataSet->Implementation->
    GetCellNeighbors(this->Id,face->GetPointIds(),cells);

  int result=cells->GetNumberOfIds()==0;
  cells->Delete(); // expensive
#if 0
  if(this->GetType()==VTK_QUADRATIC_TETRA)
    {
    if(result)
      {
      cout<<"************************************************ boundary"<<endl;
      }
    else
      {
      cout<<"************************************************ NOT boundary"<<endl;
      }
//    assert(result);
    }
#endif
  return result;
}

// Is the cell on the exterior boundary of the dataset?
// \pre 2d: GetDimension()==2
//----------------------------------------------------------------------------
int vtkBridgeCell::IsOnBoundary()
{
  assert("pre: 2d" && this->GetDimension()==2);
//  assert("check: TODO" && 0);
  return 1;
}

//----------------------------------------------------------------------------
// Description:
// Put into `id' the list of ids the point of the cell.
// \pre id_exists: id!=0
// \pre valid_size: sizeof(id)==GetNumberOfPoints();
void vtkBridgeCell::GetPointIds(vtkIdType *id)
{
  vtkIdType i=0;
  vtkIdList *l=this->Cell->GetPointIds();
  vtkIdType c=this->GetNumberOfBoundaries(0);
  while(i<c)
    {
     id[i]=l->GetId(i);
    ++i;
    }
}
//----------------------------------------------------------------------------
// Description:
// Return the ids of the vertices defining face `faceId'.
// \pre is_3d: this->GetDimension()==3
// \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
// \post result_exists: result!=0
// \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId)
int *vtkBridgeCell::GetFaceArray(int faceId)
{
  assert("pre: is_3d" && this->GetDimension()==3);
  assert("pre: valid_faceId_range" && faceId>=0
    && faceId<this->GetNumberOfBoundaries(2));

  int *result = 0;

  switch(this->GetType())
    {
    case VTK_HIGHER_ORDER_TETRAHEDRON:
      result = vtkTetra::GetFaceArray(faceId);
      break;
    case VTK_HIGHER_ORDER_HEXAHEDRON:
      if(this->Cell->GetCellType()==VTK_VOXEL)
        {
        result = vtkVoxel::GetFaceArray(faceId);
        }
      else
        {
        result = vtkHexahedron::GetFaceArray(faceId);
        }
      break;
    case VTK_HIGHER_ORDER_WEDGE:
      result = vtkWedge::GetFaceArray(faceId);
      break;
    case VTK_HIGHER_ORDER_PYRAMID:
      result = vtkPyramid::GetFaceArray(faceId);
      break;
    case VTK_PENTAGONAL_PRISM:
      assert("check: TODO" && 0);
      break;
    case VTK_HEXAGONAL_PRISM:
      assert("check: TODO" && 0);
      break;
    default:
      assert("check: impossible case" && 0);
      break;
    }
  return result;
}

//----------------------------------------------------------------------------
// Description:
// Return the number of vertices defining face `faceId'
// \pre is_3d: this->GetDimension()==3
// \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
// \post positive_result: && result>0
int vtkBridgeCell::GetNumberOfVerticesOnFace(int faceId)
{
  assert("pre: is_3d" && this->GetDimension()==3);
  assert("pre: valid_faceId_range" && faceId>=0
    && faceId<this->GetNumberOfBoundaries(2));

  int result = 0;

  switch(this->GetType())
    {
    case VTK_HIGHER_ORDER_TETRAHEDRON:
      result = 3;
      break;
    case VTK_HIGHER_ORDER_HEXAHEDRON:
      result = 4;
      break;
    case  VTK_HIGHER_ORDER_WEDGE:
      if(faceId <= 1) // triangle face
        {
        result = 3;
        }
      else // quad face
        {
        result = 4;
        }
      break;
    case VTK_HIGHER_ORDER_PYRAMID:
      if( faceId == 0)  // base
        {
        result = 4;
        }
      else // side
        {
        result = 3;
        }
      break;
#if 0 // TODO
    case VTK_PENTAGONAL_PRISM:
      if(faceId<=1)
        {
        result=4;
        }
      else
        {
        result=3;
        }
      break;
    case VTK_HEXAGONAL_PRISM:
       if(faceId<=1)
        {
        result=6;
        }
      else
        {
        result=4;
        }
      break;
#endif
    default:
      assert("check: impossible case" && 0);
      break;
    }

  assert("post: positive_result" && result>0);
  return result;
}

// copy/paste of vtkTriangle.cxx
static int triangleEdges[3][2] = { {0,1}, {1,2}, {2,0} };
static int quadEdges[4][2] = { {0,1}, {1,2}, {3,2}, {0,3} };

//----------------------------------------------------------------------------
// Description:
// Return the ids of the vertices defining edge `edgeId'.
// \pre valid_dimension: this->GetDimension()>=2
// \pre valid_edgeId_range: edgeId>=0 && edgeId<this->GetNumberOfBoundaries(1)
// \post result_exists: result!=0
// \post valid_size: sizeof(result)==2
int *vtkBridgeCell::GetEdgeArray(int edgeId)
{
  assert("pre: valid_dimension" && this->GetDimension()>=2);
  assert("pre: valid_faceId_range" && edgeId>=0
    && edgeId<this->GetNumberOfBoundaries(1));

  int *result = 0;

  switch(this->GetType())
    {
    case VTK_HIGHER_ORDER_TRIANGLE:
      result = triangleEdges[edgeId];
      break;
    case VTK_HIGHER_ORDER_QUAD:
      result = quadEdges[edgeId];
      break;
    case VTK_HIGHER_ORDER_TETRAHEDRON:
      result = vtkTetra::GetEdgeArray(edgeId);
      break;
    case VTK_HIGHER_ORDER_HEXAHEDRON:
      if(this->Cell->GetCellType()==VTK_VOXEL)
        {
        result = vtkVoxel::GetEdgeArray(edgeId);
        }
      else
        {
        result = vtkHexahedron::GetEdgeArray(edgeId);
        }
      break;
    case VTK_HIGHER_ORDER_WEDGE:
      result = vtkWedge::GetEdgeArray(edgeId);
      break;
    case VTK_HIGHER_ORDER_PYRAMID:
      result = vtkPyramid::GetEdgeArray(edgeId);
      break;
    case VTK_PENTAGONAL_PRISM:
      assert("check: TODO" && 0);
      break;
    case VTK_HEXAGONAL_PRISM:
      assert("check: TODO" && 0);
      break;
    default:
      assert("check: impossible case" && 0);
      break;
    }

  return result;
}

//----------------------------------------------------------------------------
// Description:
// Used internally for the Bridge.
// Initialize the cell from a dataset `ds' and `cellid'.
// \pre ds_exists: ds!=0
// \pre valid_cellid: (cellid>=0) && (cellid<ds->GetNumberOfCells())
void vtkBridgeCell::Init(vtkBridgeDataSet *ds,
                         vtkIdType cellid)
{
  assert("pre: ds_exists" && ds!=0);
  assert("pre: valid_cellid" && (cellid>=0)
         && (cellid<ds->GetNumberOfCells()));

  vtkSetObjectBodyMacro(DataSet,vtkBridgeDataSet,ds);
  vtkCell *tmp = ds->Implementation->GetCell(cellid);
  vtkSetObjectBodyMacro(Cell,vtkCell,tmp);
  this->Id = cellid;
  this->BoolIsInDataSet = 1;
  if(this->InternalIterator == 0)
    {
    this->InternalIterator = vtkBridgeCellIterator::New();
    }
  this->InternalIterator->InitWithOneCell(this);

  this->InternalIterator->Begin();
}

//----------------------------------------------------------------------------
// Description:
// Used internally for the Bridge.
// Initialize the cell from a cell `c' and an `id'.
// \pre c_exists: c!=0
void vtkBridgeCell::InitWithCell(vtkCell *c, vtkIdType id)
{
  assert("pre: c_exists" && c!=0);

  vtkSetObjectBodyMacro(DataSet,vtkBridgeDataSet,0);
  this->Id = id;

  // warning: do directly vtkSetObjectBodyMacro(Cell,vtkCell,c->NewInstance())
  // add memory leak because the text "c->NewInstance()" is copied several
  // time in the macro...

  if(this->Cell)
    {
    this->Cell->Delete();
    }
  this->Cell = c->NewInstance();

  this->Cell->DeepCopy(c);
  this->BoolIsInDataSet=0;

  if(this->InternalIterator==0)
    {
    this->InternalIterator=vtkBridgeCellIterator::New();
    }
  this->InternalIterator->InitWithOneCell(this);
  this->InternalIterator->Begin();
}

//----------------------------------------------------------------------------
// Description:
// Recursive copy of `other' into `this'.
// \pre other_exists: other!=0
// \pre other_differ: this!=other
void vtkBridgeCell::DeepCopy(vtkBridgeCell *other)
{
  assert("pre: other_exists" && other!=0);
  assert("pre: other_differ" && this!=other);

  vtkCell *tmp;

  if(this->InternalIterator==0)
    {
    this->InternalIterator=vtkBridgeCellIterator::New();
    }
  this->Id = other->Id;
  this->BoolIsInDataSet = other->BoolIsInDataSet;
  if(other->BoolIsInDataSet)
    {
    vtkSetObjectBodyMacro(DataSet,vtkBridgeDataSet,other->DataSet);
    tmp = this->DataSet->Implementation->GetCell(this->Id);
    vtkSetObjectBodyMacro(Cell,vtkCell,tmp);
    this->InternalIterator->InitWithOneCell(this);
    this->InternalIterator->Begin();
    }
  else
    {
    vtkSetObjectBodyMacro(DataSet,vtkBridgeDataSet,0);
    tmp = other->Cell->NewInstance();
    vtkSetObjectBodyMacro(Cell,vtkCell,tmp);
    this->Cell->Delete(); // because newinstance+macro=2 ref
    this->Cell->DeepCopy(other->Cell);
    this->InternalIterator->InitWithOneCell(this);
    this->InternalIterator->Begin();
    }
  this->Modified();
}

//----------------------------------------------------------------------------
vtkBridgeCell::vtkBridgeCell()
{
  this->DataSet = 0;
  this->InternalIterator = 0; // we cannot create the cell iterator here
  // because we will have an infinite recursion: a cell creates a
  // celliterator which creates a cell, which creates a celliterator ...
  this->Cell = 0;
  this->BoolIsInDataSet = 0;
  this->Id = -1000; // magic ?

  this->Weights = 0;
  this->WeightsCapacity = 0;
}

//----------------------------------------------------------------------------
vtkBridgeCell::~vtkBridgeCell()
{
  vtkSetObjectBodyMacro(DataSet,vtkBridgeDataSet,0);
  vtkSetObjectBodyMacro(InternalIterator,vtkBridgeCellIterator,0);
  vtkSetObjectBodyMacro(Cell,vtkCell,0);

  delete[] this->Weights;
}

//----------------------------------------------------------------------------
// Description:
// Allocate an array for the weights, only if it does not exist yet or if
// the capacity is too small.
void vtkBridgeCell::AllocateWeights()
{
  if( this->Weights != 0
    && this->WeightsCapacity < this->GetNumberOfPoints() )
    {
    delete[] this->Weights;
    this->Weights = 0;
    }
  if(this->Weights == 0)
    {
    this->Weights = new double[this->GetNumberOfPoints()];
    this->WeightsCapacity = this->GetNumberOfPoints();
    }
}

//----------------------------------------------------------------------------
// Description:
// Compute the weights for parametric coordinates `pcoords'.
void vtkBridgeCell::InterpolationFunctions(double pcoords[3], double *weights)
{
  this->Cell->InterpolateFunctions(pcoords, weights);
}