1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageFourierCenter.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageFourierCenter.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkStandardNewMacro(vtkImageFourierCenter);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageFourierCenter fitler.
vtkImageFourierCenter::vtkImageFourierCenter()
{
}
//----------------------------------------------------------------------------
// This method tells the superclass which input extent is needed.
// This gets the whole input (even though it may not be needed).
int vtkImageFourierCenter::IterativeRequestUpdateExtent(
vtkInformation* input, vtkInformation* output)
{
int *outExt = output->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT());
int *wExt = input->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
int inExt[6];
memcpy(inExt, outExt, 6 * sizeof(int));
inExt[this->Iteration*2] = wExt[this->Iteration*2];
inExt[this->Iteration*2 + 1] = wExt[this->Iteration*2 + 1];
input->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),inExt,6);
return 1;
}
//----------------------------------------------------------------------------
// This method is passed input and output regions, and executes the fft
// algorithm to fill the output from the input.
void vtkImageFourierCenter::ThreadedRequestData(
vtkInformation* vtkNotUsed( request ),
vtkInformationVector** vtkNotUsed( inputVector ),
vtkInformationVector* outputVector,
vtkImageData ***inDataVec,
vtkImageData **outDataVec,
int outExt[6],
int threadId)
{
vtkImageData* inData = inDataVec[0][0];
vtkImageData* outData = outDataVec[0];
double *inPtr0, *inPtr1, *inPtr2;
double *outPtr0, *outPtr1, *outPtr2;
vtkIdType inInc0, inInc1, inInc2;
vtkIdType outInc0, outInc1, outInc2;
int *wholeExtent, wholeMin0, wholeMax0, mid0;
int inIdx0, outIdx0, idx1, idx2;
int min0, max0, min1, max1, min2, max2;
int numberOfComponents;
int inCoords[3];
unsigned long count = 0;
unsigned long target;
double startProgress;
startProgress = this->GetIteration()/
static_cast<double>(this->GetNumberOfIterations());
// this filter expects that the input be doubles.
if (inData->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro(<< "Execute: Input must be be type double.");
return;
}
// this filter expects that the output be doubles.
if (outData->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro(<< "Execute: Output must be be type double.");
return;
}
// this filter expects input to have 1 or two components
if (outData->GetNumberOfScalarComponents() != 1 &&
outData->GetNumberOfScalarComponents() != 2)
{
vtkErrorMacro(<< "Execute: Cannot handle more than 2 components");
return;
}
// Get stuff needed to loop through the pixel
numberOfComponents = outData->GetNumberOfScalarComponents();
outPtr0 = static_cast<double *>(outData->GetScalarPointerForExtent(outExt));
wholeExtent = outputVector->GetInformationObject(0)->Get(
vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
// permute to make the filtered axis come first
this->PermuteExtent(outExt, min0, max0, min1, max1, min2, max2);
this->PermuteIncrements(inData->GetIncrements(), inInc0, inInc1, inInc2);
this->PermuteIncrements(outData->GetIncrements(), outInc0, outInc1, outInc2);
// Determine the mid for the filtered axis
wholeMin0 = wholeExtent[this->Iteration * 2];
wholeMax0 = wholeExtent[this->Iteration * 2 + 1];
mid0 = (wholeMin0 + wholeMax0) / 2;
// initialize input coordinates
inCoords[0] = outExt[0];
inCoords[1] = outExt[2];
inCoords[2] = outExt[4];
target = static_cast<unsigned long>((max2-min2+1)*(max0-min0+1)
* this->GetNumberOfIterations() / 50.0);
target++;
// loop over the filtered axis first
for (outIdx0 = min0; outIdx0 <= max0; ++outIdx0)
{
// get the correct input pointer
inIdx0 = outIdx0 + mid0;
if (inIdx0 > wholeMax0)
{
inIdx0 -= (wholeMax0 - wholeMin0 + 1);
}
inCoords[this->Iteration] = inIdx0;
inPtr0 = static_cast<double *>(inData->GetScalarPointer(inCoords));
// loop over other axes
inPtr2 = inPtr0;
outPtr2 = outPtr0;
for (idx2 = min2; !this->AbortExecute && idx2 <= max2; ++idx2)
{
if (!threadId)
{
if (!(count%target))
{
this->UpdateProgress(count/(50.0*target) + startProgress);
}
count++;
}
inPtr1 = inPtr2;
outPtr1 = outPtr2;
for (idx1 = min1; idx1 <= max1; ++idx1)
{
// handle components (up to 2) explicitly
*outPtr1 = *inPtr1;
if (numberOfComponents == 2)
{
outPtr1[1] = inPtr1[1];
}
inPtr1 += inInc1;
outPtr1 += outInc1;
}
inPtr2 += inInc2;
outPtr2 += outInc2;
}
outPtr0 += outInc0;
}
}
|