File: vtkClipConvexPolyData.cxx

package info (click to toggle)
vtk7 7.1.1%2Bdfsg1-12
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 125,776 kB
  • sloc: cpp: 1,539,582; ansic: 106,521; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 122; objc: 83
file content (641 lines) | stat: -rw-r--r-- 19,497 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkClipConvexPolyData.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkClipConvexPolyData.h"

#include "vtkCellArray.h"
#include "vtkMath.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPlane.h"
#include "vtkPlaneCollection.h"
#include "vtkPolyData.h"

#include <vector>
#include <set>
#include <algorithm>
#include <iterator>

vtkStandardNewMacro(vtkClipConvexPolyData);

vtkCxxSetObjectMacro(vtkClipConvexPolyData,Planes,vtkPlaneCollection);

// ----------------------------------------------------------------------------
class vtkCCPDVertex
{
public:
  double Point[3];
};

// ----------------------------------------------------------------------------
class vtkCCPDPolygon
{
public:
  std::vector<vtkCCPDVertex*> Vertices;
  std::vector<vtkCCPDVertex*> NewVertices;
};

// ----------------------------------------------------------------------------
class vtkClipConvexPolyDataInternals
{
public:
  std::vector<vtkCCPDPolygon*> Polygons;
};

// ----------------------------------------------------------------------------
// Constructor
vtkClipConvexPolyData::vtkClipConvexPolyData()
{
  this->Planes=NULL;
  this->Internal=new vtkClipConvexPolyDataInternals;

}

// ----------------------------------------------------------------------------
// Destructor
vtkClipConvexPolyData::~vtkClipConvexPolyData()
{
  this->SetPlanes(NULL);
  this->ClearInternals();
  delete this->Internal;
}

// ----------------------------------------------------------------------------
// Description:
// Redefines this method, as this filter depends on time of its components
// (planes)
vtkMTimeType vtkClipConvexPolyData::GetMTime()
{
  vtkMTimeType result=Superclass::GetMTime();
  if(this->Planes!=0)
  {
    vtkMTimeType planesTime=this->Planes->GetMTime();
    if(planesTime>result)
    {
      result=planesTime;
    }
  }
  return result;
}

// ----------------------------------------------------------------------------
void vtkClipConvexPolyData::ClearInternals()
{
  unsigned int j;
  for(unsigned int i=0; i<this->Internal->Polygons.size(); i++)
  {
    for (j=0; j<this->Internal->Polygons[i]->Vertices.size(); j++)
    {
      delete this->Internal->Polygons[i]->Vertices[j];
    }
    this->Internal->Polygons[i]->Vertices.clear();

    for (j=0; j<this->Internal->Polygons[i]->NewVertices.size(); j++)
    {
      delete this->Internal->Polygons[i]->NewVertices[j];
    }
    this->Internal->Polygons[i]->NewVertices.clear();


    delete this->Internal->Polygons[i];
  }
  this->Internal->Polygons.clear();
}

// ----------------------------------------------------------------------------
void vtkClipConvexPolyData::ClearNewVertices()
{
  for(unsigned int i=0; i<this->Internal->Polygons.size(); i++)
  {
    for(unsigned int j=0; j<this->Internal->Polygons[i]->NewVertices.size();
        j++)
    {
      delete this->Internal->Polygons[i]->NewVertices[j];
    }
    this->Internal->Polygons[i]->NewVertices.clear();
  }
}

// ----------------------------------------------------------------------------
void vtkClipConvexPolyData::RemoveEmptyPolygons()
{
  bool done = false;

  while (!done )
  {
    done = true;
    for(unsigned int i=0; i<this->Internal->Polygons.size(); i++)
    {
      if ( this->Internal->Polygons[i]->Vertices.size() == 0 )
      {
        std::vector<vtkCCPDPolygon*>::iterator where =
          std::find(this->Internal->Polygons.begin(),
               this->Internal->Polygons.end(),
               this->Internal->Polygons[i]);
        if ( where != this->Internal->Polygons.end() )
        {
          delete this->Internal->Polygons[i];
          this->Internal->Polygons.erase(where);
          done = false;
          break;
        }
      }
    }
  }
}

// ----------------------------------------------------------------------------
//
int vtkClipConvexPolyData::RequestData(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  // Pre-conditions
  if(this->Planes==0)
  {
    vtkErrorMacro("plane collection is null");
    return 0;
  }
  if(this->Planes->GetNumberOfItems()==0)
  {
    vtkErrorMacro("plane collection is empty");
    return 0;
  }

  // get the info objects
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // get the input and ouptut
  vtkPolyData *input = vtkPolyData::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkPolyData *output = vtkPolyData::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkCellArray *polys = input->GetPolys();
  vtkPoints *points = input->GetPoints();

  // Compute tolerance to be 0.00001 of diagonal
  double min[3] = {VTK_DOUBLE_MAX, VTK_DOUBLE_MAX, VTK_DOUBLE_MAX};
  double max[3] = {VTK_DOUBLE_MIN, VTK_DOUBLE_MIN, VTK_DOUBLE_MIN};

  size_t i, j;
  double tolerance;
  for ( i = 0; i < static_cast<size_t>(points->GetNumberOfPoints()); i++ )
  {
    double pt[3];
    points->GetPoint(static_cast<vtkIdType>(i), pt);
    for ( j = 0; j < 3; j++ )
    {
      min[j] = (pt[j] < min[j])?(pt[j]):(min[j]);
      max[j] = (pt[j] > max[j])?(pt[j]):(max[j]);
    }
  }
  tolerance = sqrt(vtkMath::Distance2BetweenPoints(min,max))*0.00001;

  // Copy the polygons from the polys array to the internal
  // data structure
  vtkIdType npts;
  vtkIdType *pts;
  polys->InitTraversal();
  while ( polys->GetNextCell(npts, pts) )
  {
    vtkCCPDPolygon *polygon = new vtkCCPDPolygon;
    for ( i = 0; i < static_cast<size_t>(npts); i++ )
    {
      vtkCCPDVertex *v = new vtkCCPDVertex;
      points->GetPoint(pts[i], v->Point);
      polygon->Vertices.push_back(v);
    }
    this->Internal->Polygons.push_back(polygon);
  }

  this->Planes->InitTraversal();
  vtkPlane *plane;

  // For each plane in the collection, clip the polygons with the plane.
  while ( (plane = this->Planes->GetNextItem()) )
  {
    if ( !this->HasDegeneracies( plane ) )
    {
      this->ClipWithPlane( plane, tolerance );
    }
  }

  // Create a new set of points and polygons into which the results will
  // be stored
  vtkPoints *outPoints = vtkPoints::New();
  vtkCellArray *outPolys  = vtkCellArray::New();

  for ( i = 0; i < this->Internal->Polygons.size(); i++ )
  {
    size_t numPoints = this->Internal->Polygons[i]->Vertices.size();
    vtkIdType *polyPts = new vtkIdType[numPoints];
    for ( j = 0; j < numPoints; j++ )
    {
      polyPts[j] = outPoints->InsertNextPoint(
        this->Internal->Polygons[i]->Vertices[j]->Point );
    }
    outPolys->InsertNextCell(static_cast<vtkIdType>(numPoints), polyPts );
    delete [] polyPts;
  }

  // Set the output vertices and polygons
  output->SetPoints(outPoints);
  output->SetPolys(outPolys);

  // Delete the temporary storage
  outPoints->Delete();
  outPolys->Delete();

  this->ClearInternals();

  return 1;
}

// ----------------------------------------------------------------------------
void vtkClipConvexPolyData::ClipWithPlane( vtkPlane *plane, double tolerance )
{
  double origin[3];
  double normal[4];

  plane->GetOrigin( origin );
  plane->GetNormal( normal );

  vtkMath::Normalize(normal);

  normal[3] = -(origin[0]*normal[0] +
                origin[1]*normal[1] +
                origin[2]*normal[2]);

  int numNewPoints = 0;
  unsigned int i;
  size_t j;

  // For each polygon
  for ( i = 0; i < this->Internal->Polygons.size(); i++ )
  {
    // the new polygon. We are clipping the existing polygon then
    // removing that old polygon and adding this clipped polygon
    vtkCCPDPolygon *newPoly = new vtkCCPDPolygon;

    int somePositive = 0;
    // Look around the polygon - we only want to process it if
    // there are some positive vertices when passed through the
    // plane equation. If they are all negative, then it is entirely
    // clipped. If they are either negative or 0, then this is a boundary
    // condition and we also don't want to consider it
    size_t numVertices = this->Internal->Polygons[i]->Vertices.size();
    for ( j = 0; j < numVertices; j++ )
    {
      double *p1=this->Internal->Polygons[i]->Vertices[j]->Point;
      double p1D=p1[0]*normal[0]+p1[1]*normal[1]+p1[2]*normal[2] + normal[3];
      if ( p1D < 2.0*tolerance && p1D > -2.0*tolerance )
      {
        p1D = 0;
      }
      if ( p1D > 0 )
      {
        somePositive = 1;
        break;
      }
    }

    if ( somePositive )
    {
      // For each vertex
      for ( j = 0; j < numVertices; j++ )
      {
        double *p1=this->Internal->Polygons[i]->Vertices[j]->Point;
        double *p2=
          this->Internal->Polygons[i]->Vertices[(j+1)%numVertices]->Point;

        double p1D=p1[0]*normal[0]+p1[1]*normal[1]+p1[2]*normal[2] + normal[3];
        double p2D=p2[0]*normal[0]+p2[1]*normal[1]+p2[2]*normal[2] + normal[3];

        // We want to avoid the case where we just barely clip a vertex. If we allow
        // that to happen then we wind up with too many candidate points all in
        // approximately the same place when we try to form a loop to close off
        // the cut. So if the point is within a 1/10th of the tolerance factor
        // we've set, we'll just consider it not clipped.
        if ( p1D < 2*tolerance && p1D > -2.0*tolerance )
        {
          p1D = 0;
        }

        if ( p2D < 2*tolerance && p2D > -2.0*tolerance )
        {
          p2D = 0;
        }
        // Add p1 in if it is not clipped. If the whole polygon is unclipped
        // then we'll just add in each vertex in turn. If the whole polygon
        // is clipped we won't add in any vertices. If the polygon is
        // clipped, we'll add in two new points corresponding the the
        // crossing location of the plane on two edges of the polygon
        if ( p1D >= 0 )
        {
          vtkCCPDVertex *v = new vtkCCPDVertex;
          v->Point[0] = p1[0];
          v->Point[1] = p1[1];
          v->Point[2] = p1[2];
          newPoly->Vertices.push_back(v);
        }

        // If the first point is exactly on the boundary, we need to also count it
        // as a new point
        if ( p1D == 0 && p2D <= 0)
        {
          vtkCCPDVertex *v = new vtkCCPDVertex;
          v->Point[0] = p1[0];
          v->Point[1] = p1[1];
          v->Point[2] = p1[2];
          this->Internal->Polygons[i]->NewVertices.push_back(v);
          numNewPoints++;
        }

        if ( p2D == 0 && p1D <= 0 )
        {
          vtkCCPDVertex *v = new vtkCCPDVertex;
          v->Point[0] = p2[0];
          v->Point[1] = p2[1];
          v->Point[2] = p2[2];
          this->Internal->Polygons[i]->NewVertices.push_back(v);
          numNewPoints++;
        }

        // If the plane clips this edge - find the crossing point. We'll need
        // to add this point to the new polygon
        if ( p1D*p2D < 0 )
        {
          double w = -p1D / (p2D - p1D);

          vtkCCPDVertex *v = new vtkCCPDVertex;
          v->Point[0] = p1[0] + w * (p2[0]-p1[0]);
          v->Point[1] = p1[1] + w * (p2[1]-p1[1]);
          v->Point[2] = p1[2] + w * (p2[2]-p1[2]);
          newPoly->Vertices.push_back(v);

          v = new vtkCCPDVertex;
          v->Point[0] = p1[0] + w * (p2[0]-p1[0]);
          v->Point[1] = p1[1] + w * (p2[1]-p1[1]);
          v->Point[2] = p1[2] + w * (p2[2]-p1[2]);
          this->Internal->Polygons[i]->NewVertices.push_back(v);
          numNewPoints++;
        }
      }
    }

    // Remove the current polygon
    for ( j = 0; j < numVertices; j++ )
    {
      delete this->Internal->Polygons[i]->Vertices[j];
    }
    this->Internal->Polygons[i]->Vertices.clear();

    // copy in the new polygon if it isn't entirely clipped
    numVertices = newPoly->Vertices.size();
    if ( numVertices > 0 )
    {
      for ( j = 0; j < numVertices; j++ )
      {
        this->Internal->Polygons[i]->Vertices.push_back(newPoly->Vertices[j]);
      }
      newPoly->Vertices.clear();
    }
    delete newPoly;
  }

  // If we've added any new points when clipping the polydata then
  // we must have added at least six. Otherwise something is wrong
  if ( numNewPoints )
  {
    if ( numNewPoints < 6 )
    {
      vtkErrorMacro(<< "Failure - not enough new points");
      return;
    }

    // Check that all new arrays contain exactly 0 or 2 points
    for ( i = 0; i < this->Internal->Polygons.size(); i++ )
    {
      if ( this->Internal->Polygons[i]->NewVertices.size() != 0 &&
           this->Internal->Polygons[i]->NewVertices.size() != 2 )
      {
        vtkErrorMacro( << "Horrible error - we have " <<
                       this->Internal->Polygons[i]->NewVertices.size()
                       << " crossing points");
        return;
      }
    }

    // Find the first polygon with a new point
    size_t idx = 0;
    bool idxFound=false;

    for ( i = 0; !idxFound && i < this->Internal->Polygons.size(); i++ )
    {
      idxFound=this->Internal->Polygons[i]->NewVertices.size() > 0;
      if(idxFound)
      {
        idx=i;
      }
    }

    if (!idxFound)
    {
      vtkErrorMacro( << "Couldn't find any new vertices!");
      return;
    }

    // the new polygon
    vtkCCPDPolygon *newPoly = new vtkCCPDPolygon;
    vtkCCPDVertex *v = new vtkCCPDVertex;
    v->Point[0] = this->Internal->Polygons[idx]->NewVertices[0]->Point[0];
    v->Point[1] = this->Internal->Polygons[idx]->NewVertices[0]->Point[1];
    v->Point[2] = this->Internal->Polygons[idx]->NewVertices[0]->Point[2];
    newPoly->Vertices.push_back(v);

    v = new vtkCCPDVertex;
    v->Point[0] = this->Internal->Polygons[idx]->NewVertices[1]->Point[0];
    v->Point[1] = this->Internal->Polygons[idx]->NewVertices[1]->Point[1];
    v->Point[2] = this->Internal->Polygons[idx]->NewVertices[1]->Point[2];
    newPoly->Vertices.push_back(v);

    double lastPoint[3];
    lastPoint[0] = this->Internal->Polygons[idx]->NewVertices[1]->Point[0];
    lastPoint[1] = this->Internal->Polygons[idx]->NewVertices[1]->Point[1];
    lastPoint[2] = this->Internal->Polygons[idx]->NewVertices[1]->Point[2];

    size_t lastPointIdx = idx;
    size_t subIdx;

    while ( static_cast<int>(newPoly->Vertices.size()) < numNewPoints / 2 )
    {
      // Find the index of the closest new vertex that matches the
      // lastPoint but not the lastPointIdx.
      subIdx = 0;
      float closestDistance = VTK_FLOAT_MAX;
      bool foundSubIdx=false;
      for ( i = 0; i < this->Internal->Polygons.size(); i++ )
      {
          if ( i != lastPointIdx &&
               this->Internal->Polygons[i]->NewVertices.size() > 0 )
          {
          for ( j = 0; j < 2; j++ )
          {
            float testDistance =
              vtkMath::Distance2BetweenPoints(lastPoint,
                  this->Internal->Polygons[i]->NewVertices[j]->Point);
            if ( testDistance < tolerance && testDistance < closestDistance)
            {
              closestDistance = testDistance;
              idx = i;
              subIdx =j;
              foundSubIdx=true;
            }
          }
          }
      }

      if ( !foundSubIdx )
      {
        vtkErrorMacro("Could not find a match");
      }

      v = new vtkCCPDVertex;
      v->Point[0] =
        this->Internal->Polygons[idx]->NewVertices[(subIdx+1)%2]->Point[0];
      v->Point[1] =
        this->Internal->Polygons[idx]->NewVertices[(subIdx+1)%2]->Point[1];
      v->Point[2] =
        this->Internal->Polygons[idx]->NewVertices[(subIdx+1)%2]->Point[2];
      newPoly->Vertices.push_back(v);

      lastPoint[0] =
        this->Internal->Polygons[idx]->NewVertices[(subIdx+1)%2]->Point[0];
      lastPoint[1] =
        this->Internal->Polygons[idx]->NewVertices[(subIdx+1)%2]->Point[1];
      lastPoint[2] =
        this->Internal->Polygons[idx]->NewVertices[(subIdx+1)%2]->Point[2];
      lastPointIdx = idx;
    }


    // check to see that the polygon vertices are in the right order.
    // cross product of p1p2 and p3p2 should point in the same direction
    // as the plane normal. Otherwise, reverse the order
    int flipCount = 0;
    int checkCount = 0;
    for (size_t startV = 0; startV+2 < newPoly->Vertices.size(); startV++)
    {
      double *p1 = newPoly->Vertices[startV]->Point;
      double *p2 = newPoly->Vertices[startV+1]->Point;
      double *p3 = newPoly->Vertices[startV+2]->Point;
      double v1[3];
      double v2[3];
      double cross[3];
      v1[0] = p1[0] - p2[0];
      v1[1] = p1[1] - p2[1];
      v1[2] = p1[2] - p2[2];
      v2[0] = p3[0] - p2[0];
      v2[1] = p3[1] - p2[1];
      v2[2] = p3[2] - p2[2];
      vtkMath::Cross(v1,v2,cross);
      double nd = vtkMath::Normalize(cross);
      // only check if the length of the cross product is long
      // enough - otherwise we might be working with points that
      // are all too close together and we might wind up with
      // misleading results
      if ( nd > tolerance )
      {
        if ( vtkMath::Dot(cross,normal) < 0 )
        {
          flipCount++;
        }
        checkCount++;
      }
    }

    // As long as more than half the time we checked we got the answer
    // that we should flip, go ahead and flip it
    if ( flipCount > checkCount/2 )
    {
      std::reverse(newPoly->Vertices.begin(), newPoly->Vertices.end());
    }
    this->Internal->Polygons.push_back(newPoly);
  }
  this->RemoveEmptyPolygons();
  this->ClearNewVertices();
}

// ----------------------------------------------------------------------------
bool vtkClipConvexPolyData::HasDegeneracies(vtkPlane *plane)
{
  double origin[3];
  double normal[4];

  plane->GetOrigin( origin );
  plane->GetNormal( normal );

  normal[3] = -(origin[0]*normal[0] +
                origin[1]*normal[1] +
                origin[2]*normal[2]);

  unsigned int i;
  size_t j;
  // For each polygon
  int totalNumNewVertices = 0;
  for ( i = 0; i < this->Internal->Polygons.size(); i++ )
  {
    // For each vertex
    size_t numVertices = this->Internal->Polygons[i]->Vertices.size();
    int numNewVertices = 0;
    for ( j = 0; j < numVertices; j++ )
    {
      double *p1 = this->Internal->Polygons[i]->Vertices[j]->Point;
      double *p2 =
        this->Internal->Polygons[i]->Vertices[(j+1)%numVertices]->Point;

      double p1D=p1[0]*normal[0]+p1[1]*normal[1]+p1[2]*normal[2]+normal[3];
      double p2D=p2[0]*normal[0]+p2[1]*normal[1]+p2[2]*normal[2]+normal[3];

      // If the plane clips this edge - find the crossing point
      if ( p1D*p2D <= 0 )
      {
        numNewVertices++;
      }
    }
    if ( numNewVertices != 0 && numNewVertices != 2)
    {
      return true;
    }
    totalNumNewVertices += numNewVertices;
  }

  if ( totalNumNewVertices < 6 )
  {
    return true;
  }
  return false;
}

// ----------------------------------------------------------------------------
void vtkClipConvexPolyData::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os,indent);

  os << indent << "Planes: " << this->Planes << endl;
}